Skip to main content

Advertisement

Log in

Targeting Estrogen Receptors for the Treatment of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The significantly higher incidence of Alzheimer's disease (AD) in women than in men has been attributed to loss of estrogen and a variety of related mechanisms at the molecular, cellular, and hormonal levels, which subsequently elucidate neuroprotective roles of estrogen against AD-related pathology. Recent studies have proposed that beneficial effects of estrogen on AD are directly linked to its ability to reduce amyloid-β peptides and tau aggregates, two hallmark lesions of AD. Despite high expectations, large clinical trials with postmenopausal women indicated that the beneficial effects of estrogen therapies were insignificant and, in fact, elicited adverse effects. Here, we review the current status of AD prevention and treatment using estrogens focusing on recent understandings of their biochemical links to AD pathophysiology. This review also discusses development of selective ligands that specifically target either estrogen receptor α (ERα) or ERβ isoforms, which are potentially promising strategies for safe and efficient treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Corpechot C, Robel P, Axelson M, Sjovall J, Baulieu EE (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 78(8):4704–4707

    Article  CAS  PubMed  Google Scholar 

  2. Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogiue-Ikeda M, Ishii H, Kimoto T, Kawato S (2008) Estrogen synthesis in the brain—role in synaptic plasticity and memory. Mol Cell Endocrinol 290(1–2):31–43

    Article  CAS  PubMed  Google Scholar 

  3. Wharton W, Baker LD, Gleason CE, Dowling M, Barnet JH, Johnson S, Carlsson C, Craft S, Asthana S (2011) Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer's disease: results of a randomized controlled trial. J Alzheimers Dis 26(3):495–505

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Lee JH, Lee MJ (2012) Emerging roles of the ubiquitin–proteasome system in the steroid receptor signaling. Arch Pharm Res 35(3):397–407

    Article  CAS  PubMed  Google Scholar 

  5. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307(5715):1625–1630

    Article  CAS  PubMed  Google Scholar 

  6. Bunn F, Goodman C, Sworn K, Rait G, Brayne C, Robinson L, McNeilly E, Iliffe S (2012) Psychosocial factors that shape patient and carer experiences of dementia diagnosis and treatment: a systematic review of qualitative studies. PLoS Med 9(10):e1001331

    Article  PubMed Central  PubMed  Google Scholar 

  7. Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  8. Aisen PS (2009) Alzheimer's disease therapeutic research: the path forward. Alzheimers Res Ther 1(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin–proteasome system versus the autophagy–lysosome system. Prog Neurobiol 105(2013):49–59

    Article  CAS  PubMed  Google Scholar 

  10. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 60(9):1495–1500

    Article  CAS  PubMed  Google Scholar 

  11. Robertson JF (2004) Selective oestrogen receptor modulators/new antioestrogens: a clinical perspective. Cancer Treat Rev 30(8):695–706

    Article  CAS  PubMed  Google Scholar 

  12. Muchmore DB (2000) Raloxifene: a selective estrogen receptor modulator (SERM) with multiple target system effects. Oncologist 5(5):388–392

    Article  CAS  PubMed  Google Scholar 

  13. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360

    CAS  PubMed  Google Scholar 

  14. Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3(11):950–964

    Article  CAS  PubMed  Google Scholar 

  15. Rochette-Egly C (2005) Dynamic combinatorial networks in nuclear receptor-mediated transcription. J Biol Chem 280(38):32565–32568

    Article  CAS  PubMed  Google Scholar 

  16. Carroll JS, Brown M (2006) Estrogen receptor target gene: an evolving concept. Mol Endocrinol 20(8):1707–1714

    Article  CAS  PubMed  Google Scholar 

  17. Okoh V, Deoraj A, Roy D (2011) Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta 1815(1):115–133

    CAS  PubMed  Google Scholar 

  18. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4):833–842

    Article  PubMed  Google Scholar 

  19. Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI (2002) Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16(1):70–84

    Article  CAS  PubMed  Google Scholar 

  20. Filice E, Recchia AG, Pellegrino D, Angelone T, Maggiolini M, Cerra MC (2009) A new membrane G protein-coupled receptor (GPR30) is involved in the cardiac effects of 17beta-estradiol in the male rat. J Physiol Pharmacol 60(4):3–10

    CAS  PubMed  Google Scholar 

  21. Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14(10):1649–1660

    Article  CAS  PubMed  Google Scholar 

  22. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146(2):624–632

    Article  CAS  PubMed  Google Scholar 

  23. Doolan CM, Condliffe SB, Harvey BJ (2000) Rapid non-genomic activation of cytosolic cyclic AMP-dependent protein kinase activity and [Ca(2+)](i) by 17beta-oestradiol in female rat distal colon. Br J Pharmacol 129(7):1375–1386

    Article  CAS  PubMed  Google Scholar 

  24. Vasudevan N, Pfaff DW (2008) Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 29(2):238–257

    Article  CAS  PubMed  Google Scholar 

  25. Corder EH, Ghebremedhin E, Taylor MG, Thal DR, Ohm TG, Braak H (2004) The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism. Ann N Y Acad Sci 1019:24–28

    Article  CAS  PubMed  Google Scholar 

  26. Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA (2005) Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry 62(6):685–691

    Article  PubMed  Google Scholar 

  27. Kalesnykas G, Roschier U, Puolivali J, Wang J, Miettinen R (2005) The effect of aging on the subcellular distribution of estrogen receptor-alpha in the cholinergic neurons of transgenic and wild-type mice. Eur J Neurosci 21(5):1437–1442

    Article  PubMed  Google Scholar 

  28. Shughrue PJ, Scrimo PJ, Merchenthaler I (2000) Estrogen binding and estrogen receptor characterization (ERalpha and ERbeta) in the cholinergic neurons of the rat basal forebrain. Neuroscience 96(1):41–49

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63(1):29–60

    Article  CAS  PubMed  Google Scholar 

  30. Watters JJ, Campbell JS, Cunningham MJ, Krebs EG, Dorsa DM (1997) Rapid membrane effects of steroids in neuroblastoma cells: effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology 138(9):4030–4033

    Article  CAS  PubMed  Google Scholar 

  31. Singh M (2001) Ovarian hormones elicit phosphorylation of Akt and extracellular-signal regulated kinase in explants of the cerebral cortex. Endocrine 14(3):407–415

    Article  CAS  PubMed  Google Scholar 

  32. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM (1999) The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci 19(7):2455–2463

    CAS  PubMed  Google Scholar 

  33. Cordey M, Gundimeda U, Gopalakrishna R, Pike CJ (2003) Estrogen activates protein kinase C in neurons: role in neuroprotection. J Neurochem 84(6):1340–1348

    Article  CAS  PubMed  Google Scholar 

  34. Yao M, Nguyen TV, Pike CJ (2007) Estrogen regulates Bcl-w and Bim expression: role in protection against beta-amyloid peptide-induced neuronal death. J Neurosci 27(6):1422–1433

    Article  CAS  PubMed  Google Scholar 

  35. Pike CJ (1999) Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer's disease. J Neurochem 72(4):1552–1563

    Article  CAS  PubMed  Google Scholar 

  36. Shy H, Malaiyandi L, Timiras PS (2000) Protective action of 17beta-estradiol and tamoxifen on glutamate toxicity in glial cells. Int J Dev Neurosci 18(2–3):289–297

    Article  CAS  PubMed  Google Scholar 

  37. Spampinato SF, Merlo S, Molinaro G, Battaglia G, Bruno V, Nicoletti F, Sortino MA (2012) Dual effect of 17beta-estradiol on NMDA-induced neuronal death: involvement of metabotropic glutamate receptor 1. Endocrinology 153(12):5940–5948

    Article  CAS  PubMed  Google Scholar 

  38. Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, Pike CJ (2007) Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci 27(48):13357–13365

    Article  CAS  PubMed  Google Scholar 

  39. Luciani P, Deledda C, Rosati F, Benvenuti S, Cellai I, Dichiara F, Morello M, Vannelli GB, Danza G, Serio M, Peri A (2008) Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures. Endocrinology 149(9):4256–4266

    Article  CAS  PubMed  Google Scholar 

  40. Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, Harada N, Zhong Z, Shen Y, Li R (2005) Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer's disease animal model. Proc Natl Acad Sci USA 102(52):19198–19203

    Article  CAS  PubMed  Google Scholar 

  41. Marin R, Guerra B, Morales A, Diaz M, Alonso R (2003) An ICI 182,780-sensitive, membrane-related estrogen receptor contributes to estrogenic neuroprotective actions against amyloid-beta toxicity. Ann N Y Acad Sci 1007:108–116

    Article  CAS  PubMed  Google Scholar 

  42. Fitzpatrick JL, Mize AL, Wade CB, Harris JA, Shapiro RA, Dorsa DM (2002) Estrogen-mediated neuroprotection against beta-amyloid toxicity requires expression of estrogen receptor alpha or beta and activation of the MAPK pathway. J Neurochem 82(3):674–682

    Article  CAS  PubMed  Google Scholar 

  43. Nord LC, Sundqvist J, Andersson E, Fried G (2010) Analysis of oestrogen regulation of alpha-, beta- and gamma-secretase gene and protein expression in cultured human neuronal and glial cells. Neurodegener Dis 7(6):349–364

    Article  PubMed  Google Scholar 

  44. Zhao L, Yao J, Mao Z, Chen S, Wang Y, Brinton RD (2011) 17beta-Estradiol regulates insulin-degrading enzyme expression via an ERbeta/PI3-K pathway in hippocampus: relevance to Alzheimer's prevention. Neurobiol Aging 32(11):1949–1963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liang K, Yang L, Yin C, Xiao Z, Zhang J, Liu Y, Huang J (2010) Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J Biol Chem 285(2):935–942

    Article  CAS  PubMed  Google Scholar 

  46. Bao J, Cao C, Zhang X, Jiang F, Nicosia SV, Bai W (2007) Suppression of beta-amyloid precursor protein signaling into the nucleus by estrogens mediated through complex formation between the estrogen receptor and Fe65. Mol Cell Biol 27(4):1321–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J (2012) Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 1820(4):453–460

    Article  CAS  PubMed  Google Scholar 

  48. Bernstein HG, Ansorge S, Riederer P, Reiser M, Frolich L, Bogerts B (1999) Insulin-degrading enzyme in the Alzheimer's disease brain: prominent localization in neurons and senile plaques. Neurosci Lett 263(2–3):161–164

    Article  CAS  PubMed  Google Scholar 

  49. Kurochkin IV (2001) Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem Sci 26(7):421–425

    Article  CAS  PubMed  Google Scholar 

  50. Kurochkin IV, Goto S (1994) Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345(1):33–37

    Article  CAS  PubMed  Google Scholar 

  51. Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging 27(2):190–198

    Article  CAS  PubMed  Google Scholar 

  52. Jayaraman A, Carroll JC, Morgan TE, Lin S, Zhao L, Arimoto JM, Murphy MP, Beckett TL, Finch CE, Brinton RD, Pike CJ (2012) 17beta-estradiol and progesterone regulate expression of beta-amyloid clearance factors in primary neuron cultures and female rat brain. Endocrinology 153(11):5467–5479

    Article  CAS  PubMed  Google Scholar 

  53. Farris W, Schutz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171(1):241–251

    Article  CAS  PubMed  Google Scholar 

  54. Xiao ZM, Sun L, Liu YM, Zhang JJ, Huang J (2009) Estrogen regulation of the neprilysin gene through a hormone-responsive element. J Mol Neurosci 39(1–2):22–26

    Article  CAS  PubMed  Google Scholar 

  55. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948

    Article  CAS  PubMed  Google Scholar 

  56. Wingrove CS, Garr E, Godsland IF, Stevenson JC (1998) 17beta-oestradiol enhances release of matrix metalloproteinase-2 from human vascular smooth muscle cells. Biochim Biophys Acta 1406(2):169–174

    Article  CAS  PubMed  Google Scholar 

  57. Merlo S, Sortino MA (2012) Estrogen activates matrix metalloproteinases-2 and −9 to increase beta amyloid degradation. Mol Cell Neurosci 49(4):423–429

    Article  CAS  PubMed  Google Scholar 

  58. Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C (2005) Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience 132(3):581–589

    Article  CAS  PubMed  Google Scholar 

  59. Zhang QG, Wang R, Khan M, Mahesh V, Brann DW (2008) Role of Dickkopf-1, an antagonist of the Wnt/beta-catenin signaling pathway, in estrogen-induced neuroprotection and attenuation of tau phosphorylation. J Neurosci 28(34):8430–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Liu XA, Zhu LQ, Zhang Q, Shi HR, Wang SH, Wang Q, Wang JZ (2008) Estradiol attenuates tau hyperphosphorylation induced by upregulation of protein kinase-A. Neurochem Res 33(9):1811–1820

    Article  CAS  PubMed  Google Scholar 

  61. Wray S, Noble W (2009) Linking amyloid and tau pathology in Alzheimer's disease: the role of membrane cholesterol in Abeta-mediated tau toxicity. J Neurosci 29(31):9665–9667

    Article  CAS  PubMed  Google Scholar 

  62. Spampinato SF, Molinaro G, Merlo S, Iacovelli L, Caraci F, Battaglia G, Nicoletti F, Bruno V, Sortino MA (2012) Estrogen receptors and type 1 metabotropic glutamate receptors are interdependent in protecting cortical neurons against beta-amyloid toxicity. Mol Pharmacol 81(1):12–20

    Article  CAS  PubMed  Google Scholar 

  63. Benvenuti S, Luciani P, Vannelli GB, Gelmini S, Franceschi E, Serio M, Peri A (2005) Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of selective Alzheimer's disease indicator-1, a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures. J Clin Endocrinol Metab 90(3):1775–1782

    Article  CAS  PubMed  Google Scholar 

  64. Kelly JF, Bienias JL, Shah A, Meeke KA, Schneider JA, Soriano E, Bennett DA (2008) Levels of estrogen receptors alpha and beta in frontal cortex of patients with Alzheimer's disease: relationship to Mini-Mental State Examination scores. Curr Alzheimer Res 5(1):45–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hestiantoro A, Swaab DF (2004) Changes in estrogen receptor-alpha and -beta in the infundibular nucleus of the human hypothalamus are related to the occurrence of Alzheimer's disease neuropathology. J Clin Endocrinol Metab 89(4):1912–1925

    Article  CAS  PubMed  Google Scholar 

  66. Carroll JC, Pike CJ (2008) Selective estrogen receptor modulators differentially regulate Alzheimer-like changes in female 3xTg-AD mice. Endocrinology 149(5):2607–2611

    Article  CAS  PubMed  Google Scholar 

  67. Bagheri M, Joghataei MT, Mohseni S, Roghani M (2011) Genistein ameliorates learning and memory deficits in amyloid beta(1–40) rat model of Alzheimer's disease. Neurobiol Learn Mem 95(3):270–276

    Article  CAS  PubMed  Google Scholar 

  68. Grimm A, Lim YA, Mensah-Nyagan AG, Gotz J, Eckert A (2012) Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 46(1):151–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Shao H, Breitner JC, Whitmer RA, Wang J, Hayden K, Wengreen H, Corcoran C, Tschanz J, Norton M, Munger R, Welsh-Bohmer K, Zandi PP (2012) Hormone therapy and Alzheimer disease dementia: new findings from the Cache County Study. Neurology 79(18):1846–1852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by programs of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2012–0009484, 2013025964 to M.J.L., 2012R1A6A3A01039788 to J.H.L.). This work is also supported by a grant of the Korea-UK Collaborative Alzheimer's Disease Research Project) funded by the Ministry of Education, Science and Technology (A111227 to M.J.L.).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jae Lee.

Glossary

AC

Adenylyl cyclase

ACE

Angiotensin-converting enzyme

AD

Alzheimer's disease

Amyloid-β peptide

ApoE4

Apolipoprotein E4

APP

Amyloid-β precursor protein

CBP

CREB-binding protein

CDK5

Cyclin-dependent kinase 5

ChIP

Chromatin immunoprecipitation

DBD

DNA-binding domain

DPN

Diarylpropionitrile

E1

Estrone

E2

17β-Estradiol

E3

Estriol

EBAG9

Estrogen receptor binding site associated antigen 9

EDN1

Endothelin-converting enzyme 1

ER

Estrogen receptor

ERE

Estrogen-responsive element

GPCR

G-protein-coupled receptor

GPR30

G-protein-coupled receptor 30

GSK3β

Glycogen synthase kinase 3β

HB-EGF

Heparin-binding epithermal growth factor

HSP

Heat shock protein

IDE

Insulin-degrading enzyme

JNK

c-Jun N-terminal protein kinase

LBD

Ligand-binding domain

MAPK

Mitogen-activated protein kinase

MMP

Matrix metalloproteinase

NFT

Neurofibrillary tangle

NO

Nitric oxide

PHF

Paired helical filament

PI3K

Phosphoinositol 3-kinase

PKA

Protein kinase A

PPT

Propylpyrazole triol

PRD

Proline-rich domain

ROS

Reactive oxygen species

SAGE

Serial analysis of gene expression

Seladin-1

Selective AD indicator-1

SERM

Selective estrogen receptor modulator

SRC

Steroid receptor coactivator

TFF1

Trefoil factor 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Jiang, Y., Han, D.H. et al. Targeting Estrogen Receptors for the Treatment of Alzheimer’s Disease. Mol Neurobiol 49, 39–49 (2014). https://doi.org/10.1007/s12035-013-8484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8484-9

Keywords

Navigation