Molecular Neurobiology

, Volume 48, Issue 3, pp 808–811 | Cite as

Molecular Mechanisms of Meditation

  • Vishal Jindal
  • Sorab Gupta
  • Ritwik Das


Meditation is a complex process involving change in cognition, memory, and social and emotional control, and causes improvement in various cardiovascular, neurological, autoimmune, and renal pathologies. Meditation also become widely used in medical and psychological treatment therapies for stress-related physical and mental disorders. But still, biological mechanisms in terms of effect on brain and body are poorly understood. This paper explains the basic changes due to meditation in cerebral cortex, prefrontal area, cingulate gyrus, neurotransmitters, white matter, autonomic nervous system, limbic system, cytokines, endorphins, hormones, etc. The following is a review of the current literature regarding the various neurophysiological mechanisms, neuro-endocrine mechanisms, neurochemical substrates, etc. that underlies the complex processes of meditation.


Meditation Prefrontal cortex Neurological Neuroendocrinology 


  1. 1.
    Yang Y, Raine A (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res 174(2):81–88PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Brefczynski L JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ (2007) Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci U S A 104:11483–11488CrossRefGoogle Scholar
  3. 3.
    Pollmann S (2004) Anterior prefrontal cortex contributions to attention control. Exp Psychol 51:270–278PubMedCrossRefGoogle Scholar
  4. 4.
    Khalsa SS, Rudrauf D, Damasio A, Davidson RJ, Lutz A, Tranel D (2008) Interoceptive awareness in experienced meditators. Psychophysiology 45:671–677PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Raffone A, Srinivasan N (2009) An adaptive workspace hypothesis about the neural correlates of consciousness: insights from neuroscience and meditation studies. Prog Brain Res 176:161–180PubMedCrossRefGoogle Scholar
  6. 6.
    Tanga Y, Lub Q, Fand M, Yange Y, Posnerc M (2012) Mechanisms of white matter changes induced by meditation. PNAS. doi: 10.1073/pnas.1207817109 Google Scholar
  7. 7.
    Haznedar M, Buchsbaum S, Hazletta A, Shihabuddina L, Newa A, Sievera J (2004) Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr Res 71:249–262PubMedCrossRefGoogle Scholar
  8. 8.
    Fujiwara H, Hirao K, Namiki C, Yamada M, Shimizu M, Fukuyama H, Hayashi T, Murai T (2007) Anterior cingulate pathology and social cognition in schizophrenia: a study of gray matter, white matter and sulcal morphometry. NeuroImage 36:1236–1245PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson P, Penn L, Fredrickson L, Kring M, Meyer S, Catalino I, Brantley M (2011) A pilot study of loving–kindness meditation for the negative symptoms of schizophrenia. Schizophr Res 129:137–140PubMedCrossRefGoogle Scholar
  10. 10.
    Kang D, Jo H, Jung W, Kim S, Jung Y, Choi C, Lee S, An S, Jang J, Kwon J (2013) The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. SCAN 8:27–33PubMedGoogle Scholar
  11. 11.
    Luders E, Kurth F, Mayer E, Toga A, Narr K, Gaser C (2012) The unique brain anatomy of meditation practioners: alteration in cortical gyrification. Front Hum Neurosci 6:1–9Google Scholar
  12. 12.
    Esch T, Fricchione GL, Stefano GB (2003) The therapeutic use of the relaxation response in stress-related diseases. Med Sci Monit 9:23–34Google Scholar
  13. 13.
    Travis F, Tecce J, Guttman J (2000) Cortical plasticity, contingent negative variation, and transcendent experiences during practice of the transcendental meditation technique. Biol Psychol 55:41–55PubMedCrossRefGoogle Scholar
  14. 14.
    Stefano GB, Fricchione GL, Slingsby BT, Benson H (2001) The placebo effect and relaxation response: neural processes and their coupling to constitutive nitric oxide. Brain Res Brain Res Rev 35:1–19PubMedCrossRefGoogle Scholar
  15. 15.
    Esch T, Stefano GB, Fricchione GL, Benson H (2002) The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol Lett 23:199–208PubMedGoogle Scholar
  16. 16.
    Elias AN, Wilson AF (1995) Serum hormonal concentrations following transcendental meditation—potential role of gamma aminobutyric acid. Med Hypotheses 44:287–291PubMedCrossRefGoogle Scholar
  17. 17.
    Luders E, Phillips O, Clark K, Kurth F, Toga A, Narr K (2012) Bridging the hemispheres in meditation: thicker callosal regions and enhanced fractional anisotropy (FA) in long-term practitioners. NeuroImage 61:181–187PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Jevning R, Wallace K, Beidebach M (1992) The physiology of meditation: a review. A wakeful hypometabolic integrated response. Neurosci Biobehav Rev 16:415–424PubMedCrossRefGoogle Scholar
  19. 19.
    Sudsuang R, Chentanez V, Veluvan K (1991) Effects of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume an reaction time. Physiol Behav 50:543–548PubMedCrossRefGoogle Scholar
  20. 20.
    Travis F (2001) Autonomic and EEG patterns distinguish transcending from other experiences during transcendental meditation practice. Int J Psychophysiol 42:1–9PubMedCrossRefGoogle Scholar
  21. 21.
    Peng K, Mietus JE, Liu Y et al (1999) Exaggerates heart rate oscillations during two meditation techniques. Int J Cardiol 70:101–107PubMedCrossRefGoogle Scholar
  22. 22.
    Hugdahl K (1996) Cognitive influences on human autonomic nervous system function. Curr Opin Neurobiol 6:252–258PubMedCrossRefGoogle Scholar
  23. 23.
    Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180PubMedCrossRefGoogle Scholar
  24. 24.
    Tooley GA, Armstrong SM, Norman TR, Sali A (2000) Acute increases in night-time plasma melatonin levels following a period of meditation. Biol Psychol 53:69–78PubMedCrossRefGoogle Scholar
  25. 25.
    Dollins AB, Lynch HJ, Wurtman RJ et al (1993) Effect of pharmacological daytime doses of melatonin on human mood and performance. Psychopharmacology 112:490–496PubMedCrossRefGoogle Scholar
  26. 26.
    Praag H, Haan S (1980) Depression vulnerability and 5-hydroxytryptophan prophylaxis. Psychiatr Res 3:75–83CrossRefGoogle Scholar
  27. 27.
    Walton KG, Pugh ND, Gelderloos P, Macrae P (1995) Stress reduction and preventing hypertension: preliminary support for a psychoneuroendocrine mechanism. J Altern Complement Med 1:263–283PubMedCrossRefGoogle Scholar
  28. 28.
    Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23SPubMedGoogle Scholar
  29. 29.
    Funke K, Eysel UT (1995) Possible enhancement of GABAergic inputs to cat dorsal lateral geniculate relay cells by serotonin. Neuroreport 6:474–476PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshida M, Sasa M, Takaori S (1984) Serotonin-mediated inhibition from dorsal raphe neurons nucleus of neurons in dorsal lateral geniculate and thalamic reticular nuclei. Brain Res 290:95–105PubMedCrossRefGoogle Scholar
  31. 31.
    Vollenweider FX, Vontobel P, Hell D, Leenders KL (1999) 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C] raclopride. Neuropsychopharmacology 20:424–433PubMedCrossRefGoogle Scholar
  32. 32.
    Manfridi A, Brambilla D, Mancia M (1999) Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. Am J Physiol 277:1488–1492Google Scholar
  33. 33.
    Zhelyazkova-Savova MG, Giovannini G (1997) Increase of cortical acetylcholine release after systemic administration of chlorophenylpiperazine in the rat: an in vivo microdialysis study. Neurosci Lett 236:151–154PubMedCrossRefGoogle Scholar
  34. 34.
    Bevan AJW (1980) Endocrine changes in transcendental meditation. Clin Exp Pharmacol Physiol 7:75–76Google Scholar
  35. 35.
    Werrner O, Wallace R, Charles B, Gregorius Janssen G, Stryker T, Chalmers R (1986) Long-term endocrinologic changes in subjects practicing the transcendental meditation and TM-Sidhi program. Psychosom Med 48:59–65Google Scholar
  36. 36.
    Stefano GB, Esch T (2005) Integrative medical therapy: examination of meditation's therapeutic and global medicinal outcomes via nitric oxide (review). Int J Mol Med 16:621–630PubMedGoogle Scholar
  37. 37.
    Foote S (1987) Extrathalamic modulation of cortical function. Ann Rev Neurosci 10:67–95PubMedCrossRefGoogle Scholar
  38. 38.
    Jevning R, Wilson AF, Davidson JM (1978) Adrenocortical activity during meditation. Horm Behav 10:54–60PubMedCrossRefGoogle Scholar
  39. 39.
    Infanate J, Peran F, Martinez M, Roldan A, Poyatos R, Ruiz C, Samanigo F, Garridoacth F (1998) b-Endorphin in transcendental meditation. Physiol Behav 64:311–315CrossRefGoogle Scholar
  40. 40.
    Jones BM (2001) Changes in cytokine production in healthy subjects practicing Guolin Qigong:a pilot study. BMC Complement Alternat Med 1:8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.GMCHPanchkulaIndia
  2. 2.GMCHPanchkulaIndia
  3. 3.GMCHChandigarhIndia

Personalised recommendations