Skip to main content
Log in

Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bessa C, Lopes F, Maciel P, Molecular genetics of intellectual disability, InTech, Editor 2012

  2. Abrams TW (2012) Studies on aplysia neurons suggest treatments for chronic human disorders. Curr Biol 22(17):R705–11

    CAS  PubMed  Google Scholar 

  3. Gatto CL, Broadie K (2011) Drosophila modeling of heritable neurodevelopmental disorders. Curr Opin Neurobiol 21(6):834–41

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kabashi E et al (2010) In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 26(8):373–81

    CAS  PubMed  Google Scholar 

  5. Wormbook. Available from: http://www.wormbook.org/

  6. Wormatlas. Available from: http://www.wormatlas.org/

  7. Bono MD, Villu Maricq A (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28(1):451–501

    PubMed  Google Scholar 

  8. Chalfie M et al (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–5

    CAS  PubMed  Google Scholar 

  9. Hobert O, Loria P (2006) Uses of GFP in Caenorhabditis elegans. Methods Biochem Anal 47:203–26

    PubMed  Google Scholar 

  10. White JG et al (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    CAS  PubMed  Google Scholar 

  11. Jin, Y., Synaptogenesis. WormBook, 2005: p. 1–11

  12. Nonet ML (1999) Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein–GFP fusions. J Neurosci Methods 89(1):33–40

    CAS  PubMed  Google Scholar 

  13. Dittman JS, Kaplan JM (2006) Factors regulating the abundance and localization of synaptobrevin in the plasma membrane. Proc Natl Acad Sci USA 103(30):11399–404

    CAS  PubMed  Google Scholar 

  14. Jin Y et al (1999) The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 19(2):539–48

    CAS  PubMed  Google Scholar 

  15. Vashlishan AB et al (2008) An RNAi screen identifies genes that regulate GABA synapses. Neuron 58(3):346–361

    CAS  PubMed  Google Scholar 

  16. Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401(6751):371–5

    CAS  PubMed  Google Scholar 

  17. Yeh E et al (2005) Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci 25(15):3833–41

    CAS  PubMed  Google Scholar 

  18. Stigloher C et al (2011) The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions. J Neurosci 31(12):4388–96

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall DH, Russell RL (1991) The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci 11(1):1–22

    CAS  PubMed  Google Scholar 

  20. Zhao H, Nonet ML (2000) A retrograde signal is involved in activity-dependent remodeling at a C. elegans neuromuscular junction. Development 127(6):1253–66

    CAS  PubMed  Google Scholar 

  21. Rand, J.B., Acetylcholine. WormBook, 2007: p. 1–21

  22. Sieburth D et al (2005) Systematic analysis of genes required for synapse structure and function. Nature 436(7050):510–7

    CAS  PubMed  Google Scholar 

  23. Brockie PJ et al (2001) Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 21(5):1510–22

    CAS  PubMed  Google Scholar 

  24. Brockie, P.J. and A.V. Maricq, Ionotropic glutamate receptors: genetics, behavior and electrophysiology. WormBook, 2006: p. 1–16

  25. Brockie PJ, Maricq AV (2003) Ionotropic glutamate receptors in Caenorhabditis elegans. Neurosignals 12(3):108–25

    CAS  PubMed  Google Scholar 

  26. Cully DF et al (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371(6499):707–11

    CAS  PubMed  Google Scholar 

  27. Avery L (1993) The genetics of feeding in Caenorhabditis elegans. Genetics 133(4):897–917

    CAS  PubMed  Google Scholar 

  28. Lee RY et al (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19(1):159–67

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rankin CH, Wicks SR (2000) Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself. J Neurosci 20(11):4337–44

    CAS  PubMed  Google Scholar 

  30. Rose JK, Kaun KR, Rankin CH (2002) A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. Learn Mem 9(3):130–7

    PubMed  Google Scholar 

  31. Lee D et al (2008) Human vesicular glutamate transporters functionally complement EAT-4 in C. elegans. Mol Cells 25(1):50–4

    CAS  PubMed  Google Scholar 

  32. Morrison GE, van der Kooy D (2001) A mutation in the AMPA-type glutamate receptor, glr-1, blocks olfactory associative and nonassociative learning in Caenorhabditis elegans. Behav Neurosci 115(3):640–9

    CAS  PubMed  Google Scholar 

  33. Chase, D.L. and M.R. Koelle, Biogenic amine neurotransmitters in C. elegans. WormBook, 2007: p. 1–15

  34. Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7(10):1096–103

    CAS  PubMed  Google Scholar 

  35. Cao S et al (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25(15):3801–12

    CAS  PubMed  Google Scholar 

  36. Marvanova M, Nichols CD (2007) Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA. J Mol Neurosci 31(2):127–37

    CAS  PubMed  Google Scholar 

  37. Nass R, Blakely RD (2003) The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol 43:521–44

    CAS  PubMed  Google Scholar 

  38. Jorgensen, E.M., Gaba. WormBook, 2005: p. 1–13

  39. Beg AA, Jorgensen EM (2003) EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6(11):1145–52

    CAS  PubMed  Google Scholar 

  40. Bamber BA et al (2005) The composition of the GABA receptor at the Caenorhabditis elegans neuromuscular junction. Br J Pharmacol 144(4):502–9

    CAS  PubMed  Google Scholar 

  41. Bamber BA, Twyman RE, Jorgensen EM (2003) Pharmacological characterization of the homomeric and heteromeric UNC-49 GABA receptors in C. elegans. Br J Pharmacol 138(5):883–93

    CAS  PubMed  Google Scholar 

  42. Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27(7):407–14

    CAS  PubMed  Google Scholar 

  43. Li, C. and K. Kim, Neuropeptides. WormBook, 2008: p. 1–36

  44. Pierce SB et al (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15(6):672–86

    CAS  PubMed  Google Scholar 

  45. Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 17(7):844–58

    CAS  PubMed  Google Scholar 

  46. Clancy DJ et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–6

    CAS  PubMed  Google Scholar 

  47. Tatar M et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292(5514):107–10

    CAS  PubMed  Google Scholar 

  48. Holzenberger M et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–7

    CAS  PubMed  Google Scholar 

  49. Choy RK, Kemner JM, Thomas JH (2006) Fluoxetine-resistance genes in Caenorhabditis elegans function in the intestine and may act in drug transport. Genetics 172(2):885–92

    CAS  PubMed  Google Scholar 

  50. Choy RK, Thomas JH (1999) Fluoxetine-resistant mutants in C. elegans define a novel family of transmembrane proteins. Mol Cell 4(2):143–52

    CAS  PubMed  Google Scholar 

  51. Weinshenker D, Garriga G, Thomas JH (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci 15(10):6975–85

    CAS  PubMed  Google Scholar 

  52. Ward A et al (2009) Cocaine modulates locomotion behavior in C. elegans. PLoS One 4(6):e5946

    PubMed  PubMed Central  Google Scholar 

  53. Artal-Sanz M, de Jong L, Tavernarakis N (2006) Caenorhabditis elegans: a versatile platform for drug discovery. Biotechnol J 1(12):1405–18

    CAS  PubMed  Google Scholar 

  54. Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90(2):243–56

    CAS  PubMed  Google Scholar 

  55. Wheeler JM, Thomas JH (2006) Identification of a novel gene family involved in osmotic stress response in Caenorhabditis elegans. Genetics 174(3):1327–36

    CAS  PubMed  Google Scholar 

  56. Hart AC et al (1999) Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J Neurosci 19(6):1952–8

    CAS  PubMed  Google Scholar 

  57. Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7(5):729–42

    CAS  PubMed  Google Scholar 

  58. Sambongi Y et al (2000) Caenorhabditis elegans senses protons through amphid chemosensory neurons: proton signals elicit avoidance behavior. NeuroReport 11(10):2229–32

    CAS  PubMed  Google Scholar 

  59. Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438(7065):179–84

    CAS  PubMed  Google Scholar 

  60. Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402(6763):804–9

    CAS  PubMed  Google Scholar 

  61. Libert S et al (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315(5815):1133–7

    CAS  PubMed  Google Scholar 

  62. Steidl S, Rose JK, Rankin CH (2003) Stages of memory in the nematode Caenorhabditis elegans. Behav Cogn Neurosci Rev 2(1):3–14

    PubMed  Google Scholar 

  63. Lin, C.H. and C.H. Rankin, Nematode learning and memory: neuroethology, in Encyclopedia of animal behavior, D.B. Editors-in-Chief:Michael and M. Janice, Editors. 2010, Academic: Oxford. p. 520–526

  64. Mohri A et al (2005) Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics 169(3):1437–50

    CAS  PubMed  Google Scholar 

  65. Wen JY et al (1997) Mutations that prevent associative learning in C. elegans. Behav Neurosci 111(2):354–68

    CAS  PubMed  Google Scholar 

  66. Hukema RK et al (2006) Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans. EMBO J 25(2):312–22

    CAS  PubMed  Google Scholar 

  67. Jansen G, Weinkove D, Plasterk RH (2002) The G-protein gamma subunit gpc-1 of the nematode C. elegans is involved in taste adaptation. EMBO J 21(5):986–94

    CAS  PubMed  Google Scholar 

  68. Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376(6538):344–8

    CAS  PubMed  Google Scholar 

  69. Saeki S, Yamamoto M, Iino Y (2001) Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 204(Pt 10):1757–64

    CAS  PubMed  Google Scholar 

  70. Rose JK et al (2003) GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans. J Neurosci 23(29):9595–9

    CAS  PubMed  Google Scholar 

  71. Beck CD, Rankin CH (1997) Long-term habituation is produced by distributed training at long ISIs and not by massed training or short ISIs in Caenorhabditis elegans. Anim Learn Behav 25(4):446–457

    Google Scholar 

  72. de Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94(5):679–689

    PubMed  Google Scholar 

  73. Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38(4):189–200

    CAS  PubMed  Google Scholar 

  74. Thorsell A et al (2006) The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats. Pharmacol Biochem Behav 83(1):28–34

    CAS  PubMed  Google Scholar 

  75. Aydin C, Oztan O, Isgor C (2011) Effects of a selective Y2R antagonist, JNJ-31020028, on nicotine abstinence-related social anxiety-like behavior, neuropeptide Y and corticotropin releasing factor mRNA levels in the novelty-seeking phenotype. Behav Brain Res 222(2):332–41

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–12

    CAS  PubMed  Google Scholar 

  77. Simmer F et al (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12(15):1317–9

    CAS  PubMed  Google Scholar 

  78. Esposito G et al (2007) Efficient and cell specific knock-down of gene function in targeted C. elegans neurons. Gene 395(1–2):170–6

    CAS  PubMed  Google Scholar 

  79. Tavernarakis N et al (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24(2):180–3

    CAS  PubMed  Google Scholar 

  80. Kerr R et al (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26(3):583–94

    CAS  PubMed  Google Scholar 

  81. Kuhara A et al (2008) Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science 320(5877):803–7

    CAS  PubMed  Google Scholar 

  82. Nishida Y et al (2011) Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis. EMBO Rep 12(8):855–62

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schafer, W.R., Neurophysiological methods in C. elegans: an introduction. WormBook, 2006: p. 1–4

  84. Francis MM, Mellem JE, Maricq AV (2003) Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends Neurosci 26(2):90–9

    CAS  PubMed  Google Scholar 

  85. Nonet ML et al (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18(1):70–80

    CAS  PubMed  Google Scholar 

  86. Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16(19):5867–79

    CAS  PubMed  Google Scholar 

  87. Nickell WT et al (2002) Single ionic channels of two Caenorhabditis elegans chemosensory neurons in native membrane. J Membr Biol 189(1):55–66

    CAS  PubMed  Google Scholar 

  88. O'Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8(1):43–50

    PubMed  Google Scholar 

  89. Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2(9):791–7

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mellem JE et al (2002) Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36(5):933–44

    CAS  PubMed  Google Scholar 

  91. Goodman MB et al (1998) Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20(4):763–72

    CAS  PubMed  Google Scholar 

  92. Lockery SR, Goodman MB (1998) Tight-seal whole-cell patch clamping of Caenorhabditis elegans neurons. Methods Enzymol 293:201–17

    CAS  PubMed  Google Scholar 

  93. Wicks SR, Rankin CH (1995) Integration of mechanosensory stimuli in Caenorhabditis elegans. J Neurosci 15(3 Pt 2):2434–44

    CAS  PubMed  Google Scholar 

  94. Wicks SR, Rankin CH (1996) The integration of antagonistic reflexes revealed by laser ablation of identified neurons determines habituation kinetics of the Caenorhabditis elegans tap withdrawal response. J Comp Physiol A 179(5):675–85

    CAS  PubMed  Google Scholar 

  95. Chung SH et al (2006) The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci 7:30

    PubMed  PubMed Central  Google Scholar 

  96. Kimura KD et al (2004) The C. elegans thermosensory neuron AFD responds to warming. Curr Biol 14(14):1291–5

    CAS  PubMed  Google Scholar 

  97. Chalfie M et al (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5(4):956–64

    CAS  PubMed  Google Scholar 

  98. Harbinder S et al (1997) Genetically targeted cell disruption in Caenorhabditis elegans. Proc Natl Acad Sci USA 94(24):13128–33

    CAS  PubMed  Google Scholar 

  99. Qi YB et al (2012) Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci USA 109(19):7499–504

    CAS  PubMed  Google Scholar 

  100. Byrne, A.B., T.J. Edwards, and M. Hammarlund, In vivo laser axotomy in C. elegans. J Vis Exp, 2011(51)

  101. Hammarlund M et al (2009) Axon regeneration requires a conserved MAP kinase pathway. Science 323(5915):802–6

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang F et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–9

    CAS  PubMed  Google Scholar 

  103. Li W et al (2011) The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat Commun 2:315

    PubMed  PubMed Central  Google Scholar 

  104. Lindsay TH, Thiele TR, Lockery SR (2011) Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nat Commun 2:306

    PubMed  Google Scholar 

  105. Liewald JF et al (2008) Optogenetic analysis of synaptic function. Nat Methods 5(10):895–902

    CAS  PubMed  Google Scholar 

  106. Stirman JN et al (2010) High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J Neurosci Methods 191(1):90–3

    PubMed  PubMed Central  Google Scholar 

  107. Leifer AM et al (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8(2):147–52

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Okazaki A, Sudo Y, Takagi S (2012) Optical silencing of C. elegans cells with arch proton pump. PLoS One 7(5):e35370

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Caceres Ide C et al (2012) Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies. PLoS One 7(4):e35037

    PubMed  Google Scholar 

  110. Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6(5):e20085

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kraemer BC et al (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–96

    CAS  PubMed  Google Scholar 

  112. Kraemer BC et al (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100(17):9980–5

    CAS  PubMed  Google Scholar 

  113. Levitan D et al (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93(25):14940–4

    CAS  PubMed  Google Scholar 

  114. Link CD et al (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer's disease model. Neurobiol Aging 24(3):397–413

    CAS  PubMed  Google Scholar 

  115. Wittenburg N et al (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406(6793):306–9

    CAS  PubMed  Google Scholar 

  116. Hamamichi S et al (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA 105(2):728–33

    CAS  PubMed  Google Scholar 

  117. Vartiainen S et al (2006) Identification of gene expression changes in transgenic C. elegans overexpressing human alpha-synuclein. Neurobiol Dis 22(3):477–86

    CAS  PubMed  Google Scholar 

  118. Teixeira-Castro A et al (2011) Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 20(15):2996–3009

    CAS  PubMed  Google Scholar 

  119. Faber PW et al (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci USA 96(1):179–84

    CAS  PubMed  Google Scholar 

  120. Satyal SH et al (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97(11):5750–5

    CAS  PubMed  Google Scholar 

  121. Rodrigues AJ et al (2007) Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado–Joseph disease protein ataxin-3. FASEB J 21(4):1126–36

    CAS  PubMed  Google Scholar 

  122. Rodrigues AJ et al (2009) ATX-3, CDC-48 and UBXN-5: a new trimolecular complex in Caenorhabditis elegans. Biochem Biophys Res Commun 386(4):575–81

    CAS  PubMed  Google Scholar 

  123. de Voer G et al (2005) Deletion of the Caenorhabditis elegans homologues of the CLN3 gene, involved in human juvenile neuronal ceroid lipofuscinosis, causes a mild progeric phenotype. J Inherit Metab Dis 28(6):1065–80

    CAS  PubMed  Google Scholar 

  124. Oeda T et al (2001) Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet 10(19):2013–23

    CAS  PubMed  Google Scholar 

  125. Baumeister R, Ge L (2002) The worm in us—Caenorhabditis elegans as a model of human disease. Trends Biotechnol 20(4):147–8

    CAS  PubMed  Google Scholar 

  126. Miyasaka T et al (2005) Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis 20(2):372–83

    CAS  PubMed  Google Scholar 

  127. Fatouros C et al (2012) Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 21(16):3587–603

    CAS  PubMed  Google Scholar 

  128. McCormick, A.V., et al., Dopamine D2 receptor antagonism suppresses tau aggregation and neurotoxicity. Biol Psychiatry, 2012

  129. Guthrie CR, Schellenberg GD, Kraemer BC (2009) SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet 18(10):1825–38

    CAS  PubMed  Google Scholar 

  130. Kraemer BC, Schellenberg GD (2007) SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet 16(16):1959–71

    CAS  PubMed  Google Scholar 

  131. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401(6751):386–9

    CAS  PubMed  Google Scholar 

  132. Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13(9):2384–98

    CAS  PubMed  Google Scholar 

  133. Lee JE, Gleeson JG (2011) Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol 24(2):98–105

    PubMed  Google Scholar 

  134. Hirose S et al (2005) Genetics of idiopathic epilepsies. Epilepsia 46(Suppl 1):38–43

    CAS  PubMed  Google Scholar 

  135. Lu Y, Wang X (2009) Genes associated with idiopathic epilepsies: a current overview. Neurol Res 31(2):135–43

    CAS  PubMed  Google Scholar 

  136. Noebels JL (2003) Exploring new gene discoveries in idiopathic generalized epilepsy. Epilepsia 44(Suppl 2):16–21

    CAS  PubMed  Google Scholar 

  137. Kash SF et al (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94(25):14060–5

    CAS  PubMed  Google Scholar 

  138. Kearney JA et al (2006) Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet 15(6):1043–8

    CAS  PubMed  Google Scholar 

  139. Noebels JL, Sidman RL (1979) Inherited epilepsy: spike–wave and focal motor seizures in the mutant mouse tottering. Science 204(4399):1334–6

    CAS  PubMed  Google Scholar 

  140. Smart SL et al (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20(4):809–19

    CAS  PubMed  Google Scholar 

  141. Zhang X et al (2010) Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci 13(9):1056–8

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86(3):941–66

    CAS  PubMed  Google Scholar 

  143. Williams SN et al (2004) Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum Mol Genet 13(18):2043–59

    CAS  PubMed  Google Scholar 

  144. Nehrke K, Denton J, Mowrey W (2008) Intestinal Ca2+ wave dynamics in freely moving C. elegans coordinate execution of a rhythmic motor program. Am J Physiol Cell Physiol 294(1):C333–44

    CAS  PubMed  Google Scholar 

  145. Stawicki TM et al (2011) TRPM channels modulate epileptic-like convulsions via systemic ion homeostasis. Curr Biol 21(10):883–8

    CAS  PubMed  Google Scholar 

  146. Steinlein OK et al (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11(2):201–3

    CAS  PubMed  Google Scholar 

  147. Monteilh-Zoller MK et al (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hsiao B, Dweck D, Luetje CW (2001) Subunit-dependent modulation of neuronal nicotinic receptors by zinc. J Neurosci 21(6):1848–56

    CAS  PubMed  Google Scholar 

  149. Smart TG, Hosie AM, Miller PS (2004) Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 10(5):432–42

    CAS  PubMed  Google Scholar 

  150. Pandey R et al (2010) Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure 19(7):439–442

    PubMed  Google Scholar 

  151. Dibbens LM et al (2009) Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet 18(19):3626–3631

    CAS  PubMed  Google Scholar 

  152. Helbig I et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41(2):160–162

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Steinlein OK, Bertrand D (2008) Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol 76(10):1175–1183

    CAS  PubMed  Google Scholar 

  154. Brown LA et al (2006) Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: Nicotinic acetylcholine receptors, a case study. Int J Parasitol 36(6):617–624

    CAS  PubMed  Google Scholar 

  155. Ballivet M et al (1996) Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol 258(2):261–269

    CAS  PubMed  Google Scholar 

  156. Mongan NP et al (1998) An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Recept Channels 6(3):213–228

    CAS  PubMed  Google Scholar 

  157. Francis MM et al (2005) The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46(4):581–594

    CAS  PubMed  Google Scholar 

  158. Farias GG et al (2007) Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci 27(20):5313–25

    CAS  PubMed  Google Scholar 

  159. Jensen M et al (2012) Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 149(1):173–87

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Pevsner J, Hsu SC, Scheller RH (1994) n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci U S A 91(4):1445–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hamdan FF et al (2009) De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol 65(6):748–753

    CAS  PubMed  Google Scholar 

  162. Gengyo-Ando K et al (1993) The C. elegans unc-18 gene encodes a protein expressed in motor neurons. Neuron 11(4):703–711

    CAS  PubMed  Google Scholar 

  163. Weimer RM et al (2003) Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci 6(10):1023–1030

    CAS  PubMed  Google Scholar 

  164. McEwen JM, Kaplan JM (2008) UNC-18 promotes both the anterograde trafficking and synaptic function of syntaxin. Mol Biol Cell 19(9):3836–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wu MN et al (1999) Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23(3):593–605

    CAS  PubMed  Google Scholar 

  166. Gerber SH et al (2008) Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science (New York, NY) 321(5895):1507–1510

    CAS  Google Scholar 

  167. Verhage M et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287(5454):864–869

    CAS  PubMed  Google Scholar 

  168. Dobyns WB et al (1993) Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA 270(23):2838–42

    CAS  PubMed  Google Scholar 

  169. Kitamura K et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32(3):359–69

    CAS  PubMed  Google Scholar 

  170. Kumar RA et al (2010) TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 19(14):2817–2827

    CAS  PubMed  Google Scholar 

  171. Pilz DT et al (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7(13):2029–37

    CAS  PubMed  Google Scholar 

  172. Sossey-Alaoui K et al (1998) Human doublecortin (DCX) and the homologous gene in mouse encode a putative Ca2 + −dependent signaling protein which is mutated in human X-linked neuronal migration defects. Hum Mol Genet 7(8):1327–32

    CAS  PubMed  Google Scholar 

  173. Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 25(12):555–66

    CAS  PubMed  Google Scholar 

  174. Hong SE et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26(1):93–6

    CAS  PubMed  Google Scholar 

  175. Locke CJ et al (2006) Genetic interactions among cortical malformation genes that influence susceptibility to convulsions in C. elegans. Brain Res 1120(1):23–34

    CAS  PubMed  Google Scholar 

  176. Locke CJ et al (2009) Pharmacogenetic analysis reveals a post-developmental role for Rac GTPases in Caenorhabditis elegans GABAergic neurotransmission. Genetics 183(4):1357–1372

    CAS  PubMed  Google Scholar 

  177. Evason K et al (2008) Valproic acid extends Caenorhabditis elegans lifespan. Aging Cell 7(3):305–17

    CAS  PubMed  Google Scholar 

  178. Evason K et al (2005) Anticonvulsant medications extend worm life-span. Science 307(5707):258–62

    CAS  PubMed  Google Scholar 

  179. Forthun RB et al (2012) Cross-species functional genomic analysis identifies resistance genes of the histone deacetylase inhibitor valproic acid. PLoS One 7(11):e48992

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Palcoux JB, Niaudet P, Goumy P (1994) Side effects of levamisole in children with nephrosis. Pediatr Nephrol 8(2):263–4

    CAS  PubMed  Google Scholar 

  181. Joly C et al (1998) Acute levamisole poisoning. Presse Med 27(15):717

    CAS  PubMed  Google Scholar 

  182. Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–9

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Laumonnier F et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–7

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Yan J et al (2008) Analysis of the neuroligin 4Y gene in patients with autism. Psychiatr Genet 18(4):204–7

    PubMed  Google Scholar 

  185. Sato D et al (2012) SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet 90(5):879–87

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kim HG et al (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Calahorro F, Ruiz-Rubio M (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invertebr Neurosci 11(2):73–83

    Google Scholar 

  188. Calahorro F, Ruiz-Rubio M (2012) Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes. PLoS One 7(6):e39277–e39277

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Calahorro, F., E. Alejandre, and M. Ruiz-Rubio, Osmotic avoidance in Caenorhabditis elegans: synaptic function of two genes, orthologues of human NRXN1 and NLGN1, as candidates for autism. J Vis Exp, 2009(34)

  190. Hunter JW et al (2010) Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3(5–6):366–376

    CAS  PubMed  Google Scholar 

  191. Filipek PA et al (2000) Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 55(4):468–79

    CAS  PubMed  Google Scholar 

  192. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13(3):171–81

    CAS  PubMed  Google Scholar 

  193. Haklai-Topper L et al (2011) The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 11(1–2):144–50

    CAS  PubMed  Google Scholar 

  194. Naisbitt S et al (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23(3):569–82

    CAS  PubMed  Google Scholar 

  195. Sala C et al (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115–30

    CAS  PubMed  Google Scholar 

  196. Sala C et al (2005) Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci 25(18):4587–92

    CAS  PubMed  Google Scholar 

  197. Jee C et al (2004) SHN-1, a Shank homologue in C. elegans, affects defecation rhythm via the inositol-1,4,5-trisphosphate receptor. FEBS Lett 561(1–3):29–36

    CAS  PubMed  Google Scholar 

  198. Oh WC et al (2011) ANK repeat-domain of SHN-1 Is indispensable for in vivo SHN-1 function in C. elegans. Mol Cells 31(1):79–84

    CAS  PubMed  Google Scholar 

  199. Hung AY et al (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28(7):1697–708

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Castermans D et al (2003) The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet 40(5):352–6

    CAS  PubMed  Google Scholar 

  201. Wang X et al (2000) Neurobeachin: a protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic. J Neurosci 20(23):8551–65

    CAS  PubMed  Google Scholar 

  202. Medrihan L et al (2009) Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. J Physiol 587(Pt 21):5095–106

    CAS  PubMed  Google Scholar 

  203. Volders K, Nuytens K, Creemers JW (2011) The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr Mol Med 11(3):204–17

    CAS  PubMed  Google Scholar 

  204. de Souza N et al (2007) SEL-2, the C. elegans neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells. Development 134(4):691–702

    PubMed  Google Scholar 

  205. Shamloula HK et al (2002) rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics 161(2):693–710

    CAS  PubMed  Google Scholar 

  206. Katidou M et al (2008) The immunoglobulin superfamily of neuronal cell adhesion molecules: lessons from animal models and correlation with human disease. Biotechnol J 3(12):1564–80

    CAS  PubMed  Google Scholar 

  207. Rosenthal A, Jouet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2(2):107–12

    CAS  PubMed  Google Scholar 

  208. Jouet M et al (1993) A missense mutation confirms the L1 defect in X-linked hydrocephalus (HSAS). Nat Genet 4(4):331

    CAS  PubMed  Google Scholar 

  209. Fransen E et al (1995) CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur J Hum Genet 3(5):273–84

    CAS  PubMed  Google Scholar 

  210. Marui T et al (2009) Association of the neuronal cell adhesion molecule (NRCAM) gene variants with autism. Int J Neuropsychopharmacol 12(1):1–10

    CAS  PubMed  Google Scholar 

  211. Zallen JA, Kirch SA, Bargmann CI (1999) Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126(16):3679–92

    CAS  PubMed  Google Scholar 

  212. Wang X et al (2005) A role for the C. elegans L1CAM homologue lad-1/sax-7 in maintaining tissue attachment. Dev Biol 284(2):273–91

    CAS  PubMed  Google Scholar 

  213. Sasakura H et al (2005) Maintenance of neuronal positions in organized ganglia by SAX-7, a Caenorhabditis elegans homologue of L1. EMBO J 24(7):1477–88

    CAS  PubMed  Google Scholar 

  214. Pocock R et al (2008) Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Mol Cell Neurosci 37(1):56–68

    CAS  PubMed  Google Scholar 

  215. Wang X et al (2008) The C. elegans L1CAM homologue LAD-2 functions as a coreceptor in MAB-20/Sema2 mediated axon guidance. J Cell Biol 180(1):233–46

    CAS  PubMed  Google Scholar 

  216. Castellani V et al (2000) Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27(2):237–49

    CAS  PubMed  Google Scholar 

  217. Falk J et al (2005) Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48(1):63–75

    PubMed  Google Scholar 

  218. Wright AG et al (2007) Close homolog of L1 and neuropilin 1 mediate guidance of thalamocortical axons at the ventral telencephalon. J Neurosci 27(50):13667–79

    CAS  PubMed  Google Scholar 

  219. Demyanenko GP, Shibata Y, Maness PF (2001) Altered distribution of dopaminergic neurons in the brain of L1 null mice. Brain Res Dev Brain Res 126(1):21–30

    CAS  PubMed  Google Scholar 

  220. Demyanenko GP et al (2004) Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 44(3):423–37

    CAS  PubMed  Google Scholar 

  221. Demyanenko GP et al (2011) NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity. J Neurosci 31(4):1545–58

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Macosko EZ et al (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458(7242):1171–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Wu Q et al (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39(1):147–61

    CAS  PubMed  Google Scholar 

  224. Karl T et al (2010) Schizophrenia-relevant behaviours in a genetic mouse model for Y2 deficiency. Behav Brain Res 207(2):434–40

    CAS  PubMed  Google Scholar 

  225. Ramanathan S et al (2004) A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R. BMC Med Genet 5:10

    PubMed  PubMed Central  Google Scholar 

  226. Kramer JM, van Bokhoven H (2009) Genetic and epigenetic defects in mental retardation. Int J Biochem Cell Biol 41(1):96–107

    CAS  PubMed  Google Scholar 

  227. Bond J et al (2002) ASPM is a major determinant of cerebral cortical size. Nat Genet 32(2):316–320

    CAS  PubMed  Google Scholar 

  228. Higgins J et al (2010) Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biol 11:85–85

    PubMed  PubMed Central  Google Scholar 

  229. van der Voet M et al (2009) NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha. Nat Cell Biol 11(3):269–277

    PubMed  Google Scholar 

  230. Galli M et al (2011) aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division. Nat Cell Biol 13(9):1132–1138

    CAS  PubMed  Google Scholar 

  231. Fraser AG et al (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330

    CAS  PubMed  Google Scholar 

  232. Simmer F et al (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1(1):E12–E12

    PubMed  PubMed Central  Google Scholar 

  233. Piano F et al (2002) Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol 12(22):1959–1964

    CAS  PubMed  Google Scholar 

  234. Pulvers JN et al (2010) Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc Natl Acad Sci U S A 107(38):16595–16600

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Laumonnier F et al (2005) Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet 42(10):780–786

    CAS  PubMed  Google Scholar 

  236. Koivisto AM et al (2007) Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin Genet 72(2):145–149

    CAS  PubMed  Google Scholar 

  237. Qiu J et al (2010) The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res 20(8):908–918

    CAS  PubMed  Google Scholar 

  238. Kleine-Kohlbrecher D et al (2010) A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell 38(2–2):165–178

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Stromme P et al (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30(4):441–5

    CAS  PubMed  Google Scholar 

  240. Melkman T, Sengupta P (2005) Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1. Development 132(8):1935–49

    CAS  PubMed  Google Scholar 

  241. Poirier K et al (2007) Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 28(11):1055–64

    CAS  PubMed  Google Scholar 

  242. Baran R et al (2010) Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 5(3):e9655

    PubMed  PubMed Central  Google Scholar 

  243. Epstein CJ (2006) Down's syndrome: critical genes in a critical region. Nature 441(7093):582–583

    CAS  PubMed  Google Scholar 

  244. Guipponi M et al (2000) C21orf5, a novel human chromosome 21 gene, has a Caenorhabditis elegans ortholog (pad-1) required for embryonic patterning. Genomics 68(1):30–40

    CAS  PubMed  Google Scholar 

  245. Rachidi M et al (2007) New cerebellar phenotypes in YAC transgenic mouse in vivo library of human Down syndrome critical region-1. Biochem Biophys Res Commun 364(3):488–94

    CAS  PubMed  Google Scholar 

  246. Rachidi M, Lopes C (2008) Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc 12(3):168–182

    Google Scholar 

  247. Arron JR et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093):595–600

    CAS  PubMed  Google Scholar 

  248. Dierssen M, de Lagrån MMN (2006) DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A): a gene with dosage effect during development and neurogenesis. Sci World J 6:1911–1922

    CAS  Google Scholar 

  249. Park J, Song W-J, Chung K (2009) Function and regulation of Dyrk1A: towards understanding Down syndrome. Cell Mol Life Sci 66(20):3235–3240

    CAS  PubMed  Google Scholar 

  250. Raich WB et al (2003) Characterization of Caenorhabditis elegans homologs of the Down syndrome candidate gene DYRK1A. Genetics 163(2):571–580

    CAS  PubMed  Google Scholar 

  251. Altafaj, X., et al., Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis, 2012

  252. Guedj F et al (2009) Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 4(2):e4606

    PubMed  PubMed Central  Google Scholar 

  253. Ortiz-Abalia J et al (2008) Targeting Dyrk1A with AAVshRNA attenuates motor alterations in TgDyrk1A, a mouse model of Down syndrome. Am J Hum Genet 83(4):479–88

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Strippoli P et al (2000) A new gene family including DSCR1 (Down syndrome candidate region 1) and ZAKI-4: characterization from yeast to human and identification of DSCR1-like 2, a novel human member (DSCR1L2). Genomics 64(3):252–263

    CAS  PubMed  Google Scholar 

  255. Fuentes JJ et al (2000) DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Mol Genet 9(11):1681–1690

    CAS  PubMed  Google Scholar 

  256. Groth RD, Dunbar RL, Mermelstein PG (2003) Calcineurin regulation of neuronal plasticity. Biochem Biophys Res Commun 311(4):1159–1171

    CAS  PubMed  Google Scholar 

  257. Nguyen T, Di Giovanni S (2008) NFAT signaling in neural development and axon growth. Int J Dev Neurosci Off J Int Soc Dev Neurosci 26(2):141–145

    CAS  Google Scholar 

  258. Lee JI et al (2003) The Caenorhabditis elegans homologue of Down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin. J Mol Biol 328(1):147–156

    CAS  PubMed  Google Scholar 

  259. Kalscheuer VM et al (2003) Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation. Nat Genet 35(4):313–315

    CAS  PubMed  Google Scholar 

  260. Lenski C et al (2004) Novel truncating mutations in the polyglutamine tract binding protein 1 gene (PQBP1) cause Renpenning syndrome and X-linked mental retardation in another family with microcephaly. Am J Hum Genet 74(4):777–780

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Lubs H et al (2006) Golabi-to-Hall syndrome results from a missense mutation in the WW domain of the PQBP1 gene. J Med Genet 43(6):e30–e30

    CAS  PubMed  Google Scholar 

  262. Takahashi, K., et al., Nematode homologue of PQBP1, a mental retardation causative gene, is involved in lipid metabolism. PLoS One, 2009. 4(1)

  263. Gibbons RJ et al (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80(6):837–845

    CAS  PubMed  Google Scholar 

  264. Gibbons R (2006) Alpha thalassaemia-mental retardation, X linked. Orphanet J Rare Dis 1:15–15

    PubMed  PubMed Central  Google Scholar 

  265. Picketts DJ et al (1996) ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum Mol Genet 5(12):1899–1907

    CAS  PubMed  Google Scholar 

  266. Kernohan KD et al (2010) ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 18(2):191–202

    CAS  PubMed  Google Scholar 

  267. Bender AM, Wells O, Fay DS (2004) lin-35/Rb and xnp-1/ATR-X function redundantly to control somatic gonad development in C. elegans. Dev Biol 273(2):335–349

    CAS  PubMed  Google Scholar 

  268. Cardoso C et al (2005) XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Dev Biol 278(1):49–59

    CAS  PubMed  Google Scholar 

  269. Chubb JE et al (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13(1):36–64

    CAS  PubMed  Google Scholar 

  270. Soares DC et al (2011) DISC1: structure, function, and therapeutic potential for major mental illness. ACS Chem Neurosci 2(11):609–632

    CAS  PubMed  Google Scholar 

  271. Chen S-Y, Huang P-H, Cheng H-J (2011) Disrupted-in-schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc Natl Acad Sci U S A 108(14):5861–5866

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Briancon-Marjollet A et al (2008) Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol Cell Biol 28(7):2314–23

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Kwok TC et al (2006) A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441(7089):91–5

    CAS  PubMed  Google Scholar 

  274. Calamini B et al (2012) Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Biol 8(2):185–96

    CAS  Google Scholar 

  275. Wormbase. Available from: http://www.wormbase.org.

  276. Rijkers K et al (2010) Polymorphisms in CACNA1E and Camk2d are associated with seizure susceptibility of Sprague–Dawley rats. Epilepsy Res 91(1):28–34

    CAS  PubMed  Google Scholar 

  277. Genetics home reference. Available from: http://ghr.nlm.nih.gov/gene/

  278. Liu Q, Hollopeter G, Jorgensen EM (2009) Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci USA 106(26):10823–8

    CAS  PubMed  Google Scholar 

  279. Thorgeirsson TE et al (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452(7187):638–42

    CAS  PubMed  Google Scholar 

  280. Saitsu H et al (2008) De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 40(6):782–8

    CAS  PubMed  Google Scholar 

  281. Bellanger JM et al (2012) The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. J Cell Sci 125(Pt 22):5417–27

    CAS  PubMed  Google Scholar 

  282. Gonczy P et al (2001) zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. Dev Cell 1(3):363–75

    CAS  PubMed  Google Scholar 

  283. Ackman JB et al (2009) Abnormal network activity in a targeted genetic model of human double cortex. J Neurosci 29(2):313–27

    CAS  PubMed  Google Scholar 

  284. Kerjan G et al (2009) Mice lacking doublecortin and doublecortin-like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures. Proc Natl Acad Sci USA 106(16):6766–71

    CAS  PubMed  Google Scholar 

  285. Alkuraya FS et al (2011) Human mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected]. Am J Hum Genet 88(5):536–47

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Willemsen MH et al (2012) Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet 49(3):179–83

    CAS  PubMed  Google Scholar 

  287. Fu AK et al (2005) Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci USA 102(42):15224–9

    CAS  PubMed  Google Scholar 

  288. Chae T et al (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18(1):29–42

    CAS  PubMed  Google Scholar 

  289. Topalidou I, van Oudenaarden A, Chalfie M (2011) Caenorhabditis elegans aristaless/Arx gene alr-1 restricts variable gene expression. Proc Natl Acad Sci U S A 108(10):4063–4068

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Tucker M et al (2005) The Caenorhabditis elegans aristaless orthologue, alr-1, is required for maintaining the functional and structural integrity of the amphid sensory organs. Mol Biol Cell 16(10):4695–4704

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Gloria-Soria A, Azevedo RBR (2008) npr-1 regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr Biol 18(21):1694–1699

    CAS  PubMed  Google Scholar 

  292. Rogers C et al (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 6(11):1178–1185

    CAS  PubMed  Google Scholar 

  293. Asada H et al (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229(3):891–5

    CAS  PubMed  Google Scholar 

  294. Kulkarni SJ, Newby LM, Jackson FR (1994) Drosophila GABAergic systems. II. Mutational analysis of chromosomal segment 64AB, a region containing the glutamic acid decarboxylase gene. Mol Gen Genet 243(5):555–64

    CAS  PubMed  Google Scholar 

  295. Cossette P et al (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31(2):184–9

    CAS  PubMed  Google Scholar 

  296. DeLorey TM et al (1998) Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 18(20):8505–14

    CAS  PubMed  Google Scholar 

  297. Schuler V et al (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31(1):47–58

    CAS  PubMed  Google Scholar 

  298. Lee D, Su H, O'Dowd DK (2003) GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. J Neurosci 23(11):4625–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana João Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessa, C., Maciel, P. & Rodrigues, A.J. Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 48, 465–489 (2013). https://doi.org/10.1007/s12035-013-8434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8434-6

Keywords

Navigation