Advertisement

Molecular Neurobiology

, Volume 47, Issue 2, pp 770–781 | Cite as

FGF-2 Low Molecular Weight Selectively Promotes Neuritogenesis of Motor Neurons In Vitro

  • Ilary Allodi
  • Laura Casals-Díaz
  • Eva Santos-Nogueira
  • Francisco Gonzalez-Perez
  • Xavier Navarro
  • Esther UdinaEmail author
Article

Abstract

In this study, we screened in vitro the different capabilities of trophic factors with promising effect for enhancing selective regeneration and thus promoting specific reinnervation of target organs after peripheral nerve regeneration. We found that FGF-2 (18 kDa) was the trophic factor that exerted the most selective effect in promoting neurite outgrowth of spinal motoneurons both in terms of elongation and arborization. The mechanism underlying this effect on neuritogenesis seems related to FGF-2 enhancing the interaction between FGFR-1 and PSA-NCAM. The interaction of these two receptors is important during the early stages of neuritogenesis and pathfinding, while integrin alpha7B subunit seems to play a role during neurite stabilization.

Keywords

Axonal regeneration Motor neuron Sensory neuron In vitro cultures FGF-2 Cell adhesion molecules FGFR-1 

Notes

Acknowledgments

This research was supported by grants FP7-MC-214003-2 (Marie Curie Initial Training Network AXREGEN) and FP7-278612 (BIOHYBRID) from the EU, grant PI080598 and TERCEL and CIBERNED funds from the Fondo de Investigación Sanitaria of Spain. The authors thank Dr Rubèn López-Vales for expert support in the co-immunoprecipitation assay and the technical help of Monica Espejo, Jessica Jaramillo and Marta Morell. The anti-alpha7B antibody was a generous gift of Prof. Guido Tarone, Universitá di Torino. The RT97 antibody was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biology.

References

  1. 1.
    Hoke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26(38):9646–9655PubMedCrossRefGoogle Scholar
  2. 2.
    Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345(6274):440–441PubMedCrossRefGoogle Scholar
  3. 3.
    Ulenkate HJLM, Kaal ECA, Gispen WH, Jennekens FGI (1994) Ciliary neurotrophic factor improves muscle fibre reinnervation after facial nerve crush in young rats. Acta Neuropathol (Berl) 88(6):558–564CrossRefGoogle Scholar
  4. 4.
    Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368(6467):147–150PubMedCrossRefGoogle Scholar
  5. 5.
    Munson JB, McMahon SB (1997) Effects of GDNF on axotomized sensory and motor neurons in adult rats. Eur J Neurosci 9(6):1126–1129PubMedCrossRefGoogle Scholar
  6. 6.
    Allodi I, Guzmán-Lenis MS, Hernàndez J, Navarro X, Udina E (2011) In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix. J Neurosci Methods 198(1):53–61PubMedCrossRefGoogle Scholar
  7. 7.
    Haastert K, Lipokatic E, Fischer M, Timmer M, Grothe C (2006) Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiol Dis 21(1):138–153PubMedCrossRefGoogle Scholar
  8. 8.
    Ford-Perriss M, Abud H, Murphy M (2001) Fibroblast growth factors in the developing central nervous system. Clin Exp Pharmacol Physiol 28(7):493–503PubMedCrossRefGoogle Scholar
  9. 9.
    Grothe C, Nikkhah G (2001) The role of basic fibroblast growth factor in peripheral nerve regeneration. Anat Embryol (Berl) 204(3):171–177CrossRefGoogle Scholar
  10. 10.
    Cassens C, Kleene R, Xiao MF, Friedrich C, Dityateva G, Schafer-Nielsen C, Schachner M (2010) Binding of the receptor tyrosine kinase TrkB to the neural cell adhesion molecule (NCAM) regulates phosphorylation of NCAM and NCAM-dependent neurite outgrowth. J Biol Chem 285(37):28959–28967PubMedCrossRefGoogle Scholar
  11. 11.
    Franz CK, Rutishauser U, Rafuse VF (2005) Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J Neurosci 25(8):2081–2091PubMedCrossRefGoogle Scholar
  12. 12.
    van Kesteren RE, Mason MR, Macgillavry HD, Smit AB, Verhaagen J (2011) A gene network perspective on axonal regeneration. Front Mol Neurosci 4:46PubMedGoogle Scholar
  13. 13.
    Gardiner NJ, Fernyhough P, Tomlinson DR, Mayer U, von der Mark H, Streuli CH (2005) Alpha7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci 28(2):229–240PubMedCrossRefGoogle Scholar
  14. 14.
    Tucker A, Lumsden A, Guthrie S (1996) Cranial motor axons respond differently to the floor plate and sensory ganglia in collagen gel co-cultures. Eur J Neurosci 8(5):906–916PubMedCrossRefGoogle Scholar
  15. 15.
    Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, Irintchev A, Schachner M (2009) Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 132(Pt 6):1449–1462PubMedCrossRefGoogle Scholar
  16. 16.
    Gardiner NJ, Moffatt S, Fernyhough P, Humphries MJ, Streuli CH, Tomlinson DR (2007) Preconditioning injury-induced neurite outgrowth of adult rat sensory neurons on fibronectin is mediated by mobilisation of axonal alpha5 integrin. Mol Cell Neurosci 35(2):249–260PubMedCrossRefGoogle Scholar
  17. 17.
    Casella GT, Bunge RP, Wood PM (1996) Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia 17(4):327–338PubMedCrossRefGoogle Scholar
  18. 18.
    Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, Otten U (2000) Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: Relation to 18-kD fibroblast growth factor-2. Brain Res 885(2):172–181PubMedCrossRefGoogle Scholar
  19. 19.
    Tham S, Dowsing B, Finkelstein D, Donato R, Cheema SS, Bartlett PF, Morrison WA (1997) Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. J Neurosci Res 47(2):208–215PubMedCrossRefGoogle Scholar
  20. 20.
    Liu J, Gurpur PB, Kaufman SJ (2008) Genetically determined proteolytic cleavage modulates alpha7beta1 integrin function. J Biol Chem 283(51):35668–35678PubMedCrossRefGoogle Scholar
  21. 21.
    Martini R (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocyto 23(1):1–28CrossRefGoogle Scholar
  22. 22.
    Lago N, Rodríguez FJ, Guzmán MS, Jaramillo J, Navarro X (2007) Effects of motor and sensory nerve transplants on amount and specificity of sciatic nerve regeneration. J Neurosci Res 85(12):2800–2812PubMedCrossRefGoogle Scholar
  23. 23.
    Liu JP, Laufer E, Jessell TM (2001) Assigning the positional identity of spinal motor neurons: restrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32(6):997–1012PubMedCrossRefGoogle Scholar
  24. 24.
    Grothe C, Haarsten K, Jungnickel J (2006) Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration – lessons from in vivo studies in mice and rats. Brain Res Rev 51(2):293–299PubMedCrossRefGoogle Scholar
  25. 25.
    Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157(3):521–532PubMedCrossRefGoogle Scholar
  26. 26.
    Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada KM, Even-Ram S (2002) Integrin regulation of growth factor receptors. Nat Cell Biol 4(4):E75–76PubMedCrossRefGoogle Scholar
  28. 28.
    Werner A, Willem M, Jones LL, Kreutzberg GW, Mayer U, Raivich G (2000) Impaired axonal regeneration in alpha7 integrin-deficient mice. J Neurosci 20(5):1822–1830PubMedGoogle Scholar
  29. 29.
    Velling T, Collo G, Sorokin L, Durbeej M, Zhang H, Gullberg D (1996) Distinct alpha 7A beta 1 and alpha 7B beta 1 integrin expression patterns during mouse development: alpha 7A is restricted to skeletal muscle but alpha 7B is expressed in striated muscle, vasculature, and nervous system. Dev Dyn 207(4):355–371PubMedCrossRefGoogle Scholar
  30. 30.
    Barczyk M, Cerracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280PubMedCrossRefGoogle Scholar
  31. 31.
    Song WK, Wang W, Sato H, Bielser DA, Kaufman SJ (1993) Expression of alpha 7 integrin cytoplasmic domains during skeletal muscle development: alternate forms, comformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J Cell Sci 106(Pt4):1139–1152PubMedGoogle Scholar
  32. 32.
    Salie R, Steeves JD (2005) IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro. Int J Dev Neurosci 23(7):587–598PubMedCrossRefGoogle Scholar
  33. 33.
    Mi R, Chen W, Hoke A (2007) Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci USA 104(11):4664–4669PubMedCrossRefGoogle Scholar
  34. 34.
    Klimaschewski L, Nindl W, Feurle J, Kavakebi P, Kostron H (2004) Basic fibroblast growth factor isoforms promote axonal elongation and branching of adult sensory neurons in vitro. Neurosci 126(2):347–353CrossRefGoogle Scholar
  35. 35.
    Cao Z, Gao Y, Bryson JB, Hou J, Chaudhry N, Siddiq M, Martinez J, Spencer T, Carmel J, Hart RB, Filbin MT (2006) The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci 26(20):5565–5573PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ilary Allodi
    • 1
  • Laura Casals-Díaz
    • 1
  • Eva Santos-Nogueira
    • 1
  • Francisco Gonzalez-Perez
    • 1
  • Xavier Navarro
    • 1
  • Esther Udina
    • 1
    • 2
    Email author
  1. 1.Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BellaterraSpain
  2. 2.Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations