Molecular Neurobiology

, Volume 47, Issue 2, pp 711–725 | Cite as

A Non-transgenic Mouse Model (icv-STZ Mouse) of Alzheimer’s Disease: Similarities to and Differences from the Transgenic Model (3xTg-AD Mouse)

  • Yanxing Chen
  • Zhihou Liang
  • Julie Blanchard
  • Chun-Ling Dai
  • Shenggang Sun
  • Moon H. Lee
  • Inge Grundke-Iqbal
  • Khalid Iqbal
  • Fei Liu
  • Cheng-Xin Gong


Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and result from multiple etiologic factors, including environmental, genetic, and metabolic factors, whereas FAD is caused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP) genes. A commonly used animal model for AD is the 3xTg-AD transgenic mouse model, which harbors mutated presenilin 1, APP, and tau genes and thus represents a model of FAD. There is an unmet need in the field to characterize animal models representing different AD mechanisms, so that potential drugs for SAD can be evaluated preclinically in these animal models. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), the icv-STZ mouse, shows many aspects of SAD. In this study, we compared the non-cognitive and cognitive behaviors as well as biochemical and immunohistochemical alterations between the icv-STZ mouse and the 3xTg-AD mouse. We found that both mouse models showed increased exploratory activity as well as impaired learning and spatial memory. Both models also demonstrated neuroinflammation, altered synaptic proteins and insulin/IGF-1 (insulin-like growth factor-1) signaling, and increased hyperphosphorylated tau in the brain. The most prominent brain abnormality in the icv-STZ mouse was neuroinflammation, and in the 3xTg-AD mouse it was elevation of hyperphosphorylated tau. These observations demonstrate the behavioral and neuropathological similarities and differences between the icv-STZ mouse and the 3xTg-AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.


Alzheimer’s disease Mouse model Behavioral tests Brain pathology 



We thank Ms. J. Murphy for secretarial assistance. This work was supported in part by the New York State Office for People with Developmental Disabilities as well as grants from the National Institutes of Health (R01 AG027429, R03 TW008123), the U.S. Alzheimer’s Association (IIRG-10-170405 and IIRG-10-173154), the National Natural Science Foundation of China (30901386), and the Wuhan Science and Technology Bureau, China (200960323132). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests

The authors declare that they have no competing interests.


  1. 1.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917PubMedCrossRefGoogle Scholar
  2. 2.
    Iqbal K, Grundke-Iqbal I (2010) Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6(5):420–424. doi: 10.1016/j.jalz.2010.04.006 PubMedCrossRefGoogle Scholar
  3. 3.
    Waring SC, Rosenberg RN (2008) Genome-wide association studies in Alzheimer disease. Arch Neurol 65(3):329–334. doi: 10.1001/archneur.65.3.329 PubMedCrossRefGoogle Scholar
  4. 4.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421PubMedCrossRefGoogle Scholar
  5. 5.
    Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070PubMedCrossRefGoogle Scholar
  6. 6.
    Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2:23. doi: 10.1186/1742-2094-2-23 PubMedCrossRefGoogle Scholar
  7. 7.
    Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688. doi: 10.1016/j.neuron.2005.01.040 PubMedCrossRefGoogle Scholar
  8. 8.
    Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, McGaugh JL, LaFerla FM (2007) Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis 28(1):76–82. doi: 10.1016/j.nbd.2007.06.013 PubMedCrossRefGoogle Scholar
  9. 9.
    Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer’s disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9:81. doi: 10.1186/1471-2202-9-81 PubMedCrossRefGoogle Scholar
  10. 10.
    Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101(3):757–770. doi: 10.1111/j.1471-4159.2006.04368.x PubMedCrossRefGoogle Scholar
  11. 11.
    Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96(4):1005–1015. doi: 10.1111/j.1471-4159.2005.03637.x PubMedCrossRefGoogle Scholar
  12. 12.
    Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546PubMedGoogle Scholar
  13. 13.
    Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30(8):1104–1113. doi: 10.1007/s00259-003-1194-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Heiss WD, Szelies B, Kessler J, Herholz K (1991) Abnormalities of energy metabolism in Alzheimer’s disease studied with PET. Ann N Y Acad Sci 640:65–71PubMedGoogle Scholar
  15. 15.
    Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012:384017. doi: 10.1155/2012/384017 PubMedGoogle Scholar
  16. 16.
    Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62. doi: 10.1002/path.2912 PubMedCrossRefGoogle Scholar
  17. 17.
    Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80PubMedGoogle Scholar
  18. 18.
    Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338. doi: 10.1172/jci59903 PubMedCrossRefGoogle Scholar
  19. 19.
    Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233PubMedCrossRefGoogle Scholar
  20. 20.
    Salkovic-Petrisic M, Osmanovic J, Grunblatt E, Riederer P, Hoyer S (2009) Modeling sporadic Alzheimer’s disease: the insulin resistant brain state generates multiple long-term morphobiological abnormalities including hyperphosphorylated tau protein and amyloid-beta. J Alzheimers Dis 18(4):729–750. doi: 10.3233/jad-2009-1184 PubMedGoogle Scholar
  21. 21.
    Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 19(13):5245–5254PubMedGoogle Scholar
  22. 22.
    Pei JJ, Gong CX, Iqbal K, Grundke-Iqbal I, Wu QL, Winblad B, Cowburn RF (1998) Subcellular distribution of protein phosphatases and abnormally phosphorylated tau in the temporal cortex from Alzheimer’s disease and control brains. J Neural Transm 105(1):69–83PubMedCrossRefGoogle Scholar
  23. 23.
    Sargolini F, Roullet P, Oliverio A, Mele A (2003) Effects of intra-accumbens focal administrations of glutamate antagonists on object recognition memory in mice. Behav Brain Res 138(2):153–163PubMedCrossRefGoogle Scholar
  24. 24.
    Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683PubMedCrossRefGoogle Scholar
  25. 25.
    Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70(1):241–250PubMedCrossRefGoogle Scholar
  26. 26.
    Blanchard J, Wanka L, Tung YC, Cardenas-Aguayo Mdel C, LaFerla FM, Iqbal K, Grundke-Iqbal I (2010) Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting Abeta and tau pathologies in 3xTg-AD mice. Acta Neuropathol 120(5):605–621PubMedCrossRefGoogle Scholar
  27. 27.
    Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167PubMedCrossRefGoogle Scholar
  28. 28.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1):a006346. doi: 10.1101/cshperspect.a006346 PubMedGoogle Scholar
  29. 29.
    Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10(2):264–273. doi: 10.1016/j.arr.2011.01.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Prickaerts J, Fahrig T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res 102(1–2):73–88PubMedCrossRefGoogle Scholar
  31. 31.
    Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A, LaFerla FM, Fernandez-Teruel A (2007) Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev 31(1):125–147. doi: 10.1016/j.neubiorev.2006.07.007 PubMedCrossRefGoogle Scholar
  32. 32.
    Dou J, Cui C, Dufour F, Alkon DL, Zhao WQ (2003) Gene expression of alpha-endosulfine in the rat brain: correlative changes with aging, learning and stress. J Neurochem 87(5):1086–1100PubMedCrossRefGoogle Scholar
  33. 33.
    Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 532(1–2):95–100PubMedCrossRefGoogle Scholar
  34. 34.
    Cerejeira J, Lagarto L, Mukaetova-Ladinska EB (2012) Behavioral and psychological symptoms of dementia. Front Neurol 3:73. doi: 10.3389/fneur.2012.00073 PubMedCrossRefGoogle Scholar
  35. 35.
    Sterniczuk R, Antle MC, Laferla FM, Dyck RH (2010) Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 2. Behavioral and cognitive changes. Brain Res 1348:149–155. doi: 10.1016/j.brainres.2010.06.011 PubMedCrossRefGoogle Scholar
  36. 36.
    Pinton S, da Rocha JT, Gai BM, Nogueira CW (2011) Sporadic dementia of Alzheimer’s type induced by streptozotocin promotes anxiogenic behavior in mice. Behav Brain Res 223(1):1–6. doi: 10.1016/j.bbr.2011.04.014 PubMedCrossRefGoogle Scholar
  37. 37.
    McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27(5):741–749. doi: 10.1016/s0278-5846(03)00124-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31(4):578–590. doi: 10.1016/j.neurobiolaging.2008.05.015 PubMedCrossRefGoogle Scholar
  39. 39.
    Prickaerts J, De Vente J, Honig W, Steinbusch H, Ittersum MMV, Blokland A, Steinbusch HW (2000) Nitric oxide synthase does not mediate neurotoxicity after an i.c.v. injection of streptozotocin in the rat. J Neural Transm 107(7):745–766PubMedCrossRefGoogle Scholar
  40. 40.
    Weinstock M, Shoham S (2004) Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. J Neural Transm 111(3):347–366. doi: 10.1007/s00702-003-0058-y PubMedCrossRefGoogle Scholar
  41. 41.
    Rodrigues L, Biasibetti R, Swarowsky A, Leite MC, Quincozes-Santos A, Quilfeldt JA, Achaval M, Goncalves CA (2009) Hippocampal alterations in rats submitted to streptozotocin-induced dementia model are prevented by aminoguanidine. J Alzheimers Dis 17(1):193–202. doi: 10.3233/jad-2009-1034 PubMedGoogle Scholar
  42. 42.
    Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2007) Ladostigil prevents gliosis, oxidative–nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 52(3):836–843. doi: 10.1016/j.neuropharm.2006.10.005 PubMedCrossRefGoogle Scholar
  43. 43.
    Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9(1):13–33PubMedGoogle Scholar
  44. 44.
    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25(39):8843–8853. doi: 10.1523/jneurosci.2868-05.2005 PubMedCrossRefGoogle Scholar
  45. 45.
    Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T (1991) Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes 40(9):1141–1145PubMedCrossRefGoogle Scholar
  46. 46.
    Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A, Ashafaq M, Islam F, Siddiqui MS, Safhi MM (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352. doi: 10.1016/j.neuroscience.2012.02.046 PubMedCrossRefGoogle Scholar
  47. 47.
    Isik AT, Celik T, Ulusoy G, Ongoru O, Elibol B, Doruk H, Bozoglu E, Kayir H, Mas MR, Akman S (2009) Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age (Dordr) 31(1):39–49. doi: 10.1007/s11357-008-9078-8 CrossRefGoogle Scholar
  48. 48.
    Saxena G, Patro IK, Nath C (2011) ICV STZ induced impairment in memory and neuronal mitochondrial function: a protective role of nicotinic receptor. Behav Brain Res 224(1):50–57. doi: 10.1016/j.bbr.2011.04.039 PubMedCrossRefGoogle Scholar
  49. 49.
    Javed H, Khan MM, Khan A, Vaibhav K, Ahmad A, Khuwaja G, Ahmed ME, Raza SS, Ashafaq M, Tabassum R, Siddiqui MS, El-Agnaf OM, Safhi MM, Islam F (2011) S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1389:133–142. doi: 10.1016/j.brainres.2011.02.072 PubMedCrossRefGoogle Scholar
  50. 50.
    Ishrat T, Parveen K, Khan MM, Khuwaja G, Khan MB, Yousuf S, Ahmad A, Shrivastav P, Islam F (2009) Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1281:117–127. doi: 10.1016/j.brainres.2009.04.010 PubMedCrossRefGoogle Scholar
  51. 51.
    Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, Ahmad A, Islam F (2009) Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 19(9):636–647. doi: 10.1016/j.euroneuro.2009.02.002 PubMedCrossRefGoogle Scholar
  52. 52.
    Dhull DK, Jindal A, Dhull RK, Aggarwal S, Bhateja D, Padi SS (2012) Neuroprotective effect of cyclooxygenase inhibitors in ICV-STZ induced sporadic Alzheimer’s disease in rats. J Mol Neurosci 46(1):223–235. doi: 10.1007/s12031-011-9583-6 PubMedCrossRefGoogle Scholar
  53. 53.
    Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118(1):167–179. doi: 10.1007/s00401-009-0536-x PubMedCrossRefGoogle Scholar
  54. 54.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580. doi: 10.1002/ana.410300410 PubMedCrossRefGoogle Scholar
  55. 55.
    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791. doi: 10.1126/science.1074069 PubMedCrossRefGoogle Scholar
  56. 56.
    Barnes CA (1999) Do synaptic markers provide a window on synaptic effectiveness in the aged hippocampus? Neurobiol Aging 20(3):349–351, discussion 359–360PubMedCrossRefGoogle Scholar
  57. 57.
    Nicolle MM, Gallagher M, McKinney M (1999) No loss of synaptic proteins in the hippocampus of aged, behaviorally impaired rats. Neurobiol Aging 20(3):343–348PubMedCrossRefGoogle Scholar
  58. 58.
    Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am J Pathol 175(5):2089–2098. doi: 10.2353/ajpath.2009.090157 PubMedCrossRefGoogle Scholar
  59. 59.
    Oddo S, Caccamo A, Cheng D, Jouleh B, Torp R, LaFerla FM (2007) Genetically augmenting tau levels does not modulate the onset or progression of Abeta pathology in transgenic mice. J Neurochem 102(4):1053–1063. doi: 10.1111/j.1471-4159.2007.04607.x PubMedCrossRefGoogle Scholar
  60. 60.
    Salkovic-Petrisic M, Osmanovic-Barilar J, Bruckner MK, Hoyer S, Arendt T, Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 118(5):765–772. doi: 10.1007/s00702-011-0651-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yanxing Chen
    • 1
    • 2
  • Zhihou Liang
    • 2
  • Julie Blanchard
    • 1
  • Chun-Ling Dai
    • 1
  • Shenggang Sun
    • 2
  • Moon H. Lee
    • 3
  • Inge Grundke-Iqbal
    • 1
  • Khalid Iqbal
    • 1
  • Fei Liu
    • 1
  • Cheng-Xin Gong
    • 1
  1. 1.Department of NeurochemistryNew York State Institute for Basic Research in Developmental DisabilitiesNew YorkUSA
  2. 2.Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
  3. 3.Department of Developmental NeurobiologyNew York State Institute for Basic Research in Developmental DisabilitiesNew YorkUSA

Personalised recommendations