Advertisement

Molecular Neurobiology

, Volume 47, Issue 2, pp 645–661 | Cite as

Stress-Induced Grey Matter Loss Determined by MRI Is Primarily Due to Loss of Dendrites and Their Synapses

  • Mustafa S. Kassem
  • Jim Lagopoulos
  • Tim Stait-Gardner
  • William S. Price
  • Tariq W. Chohan
  • Jonathon C. Arnold
  • Sean N. Hatton
  • Maxwell R. BennettEmail author
Article

Abstract

Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm3 for the former and 0.6 mm3 for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm3 in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.

Keywords

Stress Magnetic resonance imaging Grey matter Dendrites Neurons 

Notes

Conflict of Interest

The authors declare no competing financial interests.

References

  1. 1.
    Chen S et al (2006) Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study. Psychiatry Res 146(1):65–72PubMedCrossRefGoogle Scholar
  2. 2.
    Dannlowski U et al (2012) Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71(4):286–293PubMedCrossRefGoogle Scholar
  3. 3.
    Karl A et al (2006) A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev 30(7):1004–1031PubMedCrossRefGoogle Scholar
  4. 4.
    Rogers MA et al (2009) Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res 174(3):210–216PubMedCrossRefGoogle Scholar
  5. 5.
    Shin LM et al (2004) Hippocampal function in posttraumatic stress disorder. Hippocampus 14(3):292–300PubMedCrossRefGoogle Scholar
  6. 6.
    Ansell EB et al (2012) Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions. Biol Psychiatry 72(1):57–64PubMedCrossRefGoogle Scholar
  7. 7.
    Ganzel BL et al (2008) Resilience after 9/11: multimodal neuroimaging evidence for stress-related change in the healthy adult brain. NeuroImage 40(2):788–795PubMedCrossRefGoogle Scholar
  8. 8.
    Papagni SA et al (2011) Effects of stressful life events on human brain structure: a longitudinal voxel-based morphometry study. Stress 14(2):227–232PubMedGoogle Scholar
  9. 9.
    Czeh B et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 98(22):12796–12801PubMedCrossRefGoogle Scholar
  10. 10.
    Lee T et al (2009) Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. Neuroreport 20(17):1554–1558PubMedCrossRefGoogle Scholar
  11. 11.
    Pego JM et al (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516PubMedCrossRefGoogle Scholar
  12. 12.
    Cerqueira JJ et al (2005) Corticosteroid status influences the volume of the rat cingulate cortex—a magnetic resonance imaging study. J Psychiatr Res 39(5):451–460PubMedCrossRefGoogle Scholar
  13. 13.
    Chen H, Pandey GN, Dwivedi Y (2006) Hippocampal cell proliferation regulation by repeated stress and antidepressants. Neuroreport 17(9):863–867PubMedCrossRefGoogle Scholar
  14. 14.
    Veena J et al (2009) Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. J Neurosci Res 87(4):831–843PubMedCrossRefGoogle Scholar
  15. 15.
    Veena J et al (2009) Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neurosci Lett 455(3):178–182PubMedCrossRefGoogle Scholar
  16. 16.
    Braun K et al (2009) Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience 160(3):629–638PubMedCrossRefGoogle Scholar
  17. 17.
    Llorente R et al (2009) Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells. Int J Dev Neurosci 27(3):233–241PubMedCrossRefGoogle Scholar
  18. 18.
    Llorente R et al (2008) Gender-dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: a possible role for the endocannabinoid system. Dev Neurobiol 68(11):1334–1347PubMedCrossRefGoogle Scholar
  19. 19.
    Leventopoulos M et al (2007) Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res 1142:119–126PubMedCrossRefGoogle Scholar
  20. 20.
    Musholt K et al (2009) Neonatal separation stress reduces glial fibrillary acidic protein- and S100beta-immunoreactive astrocytes in the rat medial precentral cortex. Dev Neurobiol 69(4):203–211PubMedCrossRefGoogle Scholar
  21. 21.
    Banasr M et al (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62(5):496–504PubMedCrossRefGoogle Scholar
  22. 22.
    Bannister NJ, Larkman AU (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J Comp Neurol 360(1):161–171PubMedCrossRefGoogle Scholar
  23. 23.
    Chen JR et al (2009) Fatigue reversibly reduced cortical and hippocampal dendritic spines concurrent with compromise of motor endurance and spatial memory. Neuroscience 161(4):1104–1113PubMedCrossRefGoogle Scholar
  24. 24.
    Chen Y et al (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S A 107(29):13123–13128PubMedCrossRefGoogle Scholar
  25. 25.
    Conrad CD et al (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113(5):902–913PubMedCrossRefGoogle Scholar
  26. 26.
    Konur S et al (2003) Systematic regulation of spine sizes and densities in pyramidal neurons. J Neurobiol 56(2):95–112PubMedCrossRefGoogle Scholar
  27. 27.
    McLaughlin KJ et al (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64PubMedCrossRefGoogle Scholar
  28. 28.
    Sousa N et al (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97(2):253–266PubMedCrossRefGoogle Scholar
  29. 29.
    Balu DT et al (2012) The NMDA receptor co-agonists, d-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol Dis 45(2):671–682PubMedCrossRefGoogle Scholar
  30. 30.
    Liston C et al (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26(30):7870–7874PubMedCrossRefGoogle Scholar
  31. 31.
    Radley JJ et al (2005) Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp Neurol 196(1):199–203PubMedCrossRefGoogle Scholar
  32. 32.
    Radley JJ et al (2008) Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol 507(1):1141–1150PubMedCrossRefGoogle Scholar
  33. 33.
    Shansky RM et al (2009) Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex 19(10):2479–2484PubMedCrossRefGoogle Scholar
  34. 34.
    Bennur S et al (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144(1):8–16PubMedCrossRefGoogle Scholar
  35. 35.
    Marcuzzo S et al (2007) Dendritic spines in the posterodorsal medial amygdala after restraint stress and ageing in rats. Neurosci Lett 424(1):16–21PubMedCrossRefGoogle Scholar
  36. 36.
    Qin M et al (2011) Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience 194:282–290PubMedCrossRefGoogle Scholar
  37. 37.
    Vyas A, Pillai AG, Chattarji S (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128(4):667–673PubMedCrossRefGoogle Scholar
  38. 38.
    Wolf OT et al (2002) Volumetric measurement of the hippocampus, the anterior cingulate cortex, and the retrosplenial granular cortex of the rat using structural MRI. Brain Res Brain Res Protoc 10(1):41–46PubMedCrossRefGoogle Scholar
  39. 39.
    Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55(6):563–569PubMedCrossRefGoogle Scholar
  40. 40.
    Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen GB, Pakkenberg B (1993) Do alcoholics drink their neurons away? Lancet 342(8881):1201–1204PubMedCrossRefGoogle Scholar
  42. 42.
    Kuhl S, Haug H, Schliesser W (1982) Morphometry of cortical neurons. The best estimation of perikaryon volume from the projection area. Microsc Acta 86(4):315–322PubMedGoogle Scholar
  43. 43.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San DiegoGoogle Scholar
  44. 44.
    Radley JJ et al (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125(1):1–6PubMedCrossRefGoogle Scholar
  45. 45.
    Kubo KY et al (2008) The bite-raised condition in aged SAMP8 mice induces dendritic spine changes in the hippocampal region. Neurosci Lett 441(2):141–144PubMedCrossRefGoogle Scholar
  46. 46.
    Paxinos G, Watson C (1986) The rat brain in stereotactic coordinates, 2nd edn. Academic, New YorkGoogle Scholar
  47. 47.
    Radley JJ et al (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320PubMedCrossRefGoogle Scholar
  48. 48.
    Lawrence RC, Otero NK, Kelly SJ (2012) Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens. Neurotoxicol Teratol 34(1):128–135PubMedCrossRefGoogle Scholar
  49. 49.
    Berlanga ML et al (2011) Multiscale imaging characterization of dopamine transporter knockout mice reveals regional alterations in spine density of medium spiny neurons. Brain Res 1390:41–49PubMedCrossRefGoogle Scholar
  50. 50.
    Coburn-Litvak PS et al (2003) Chronic administration of corticosterone impairs spatial reference memory before spatial working memory in rats. Neurobiol Learn Mem 80(1):11–23PubMedCrossRefGoogle Scholar
  51. 51.
    Conrad CD, Jackson JL, Wise LS (2004) Chronic stress enhances ibotenic acid-induced damage selectively within the hippocampal CA3 region of male, but not female rats. Neuroscience 125(3):759–767PubMedCrossRefGoogle Scholar
  52. 52.
    Sousa N et al (1998) Maintenance of hippocampal cell numbers in young and aged rats submitted to chronic unpredictable stress. Comparison with the effects of corticosterone treatment. Stress 2(4):237–249PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588(2):341–345PubMedCrossRefGoogle Scholar
  54. 54.
    Bennett MR (2011) The prefrontal-limbic network in depression: a core pathology of synapse regression. Prog Neurobiol 93(4):457–467PubMedCrossRefGoogle Scholar
  55. 55.
    Pillai AG et al (2012) Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity. PLoS One 7(6):e38971PubMedCrossRefGoogle Scholar
  56. 56.
    Magarinos AM et al (2011) Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21(3):253–264PubMedCrossRefGoogle Scholar
  57. 57.
    Braitenberg V, Schuz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  58. 58.
    Tata DA, Marciano VA, Anderson BJ (2006) Synapse loss from chronically elevated glucocorticoids: relationship to neuropil volume and cell number in hippocampal area CA3. J Comp Neurol 498(3):363–374PubMedCrossRefGoogle Scholar
  59. 59.
    Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286(4):442–455PubMedCrossRefGoogle Scholar
  60. 60.
    Alpar A et al (2006) Different dendrite and dendritic spine alterations in basal and apical arbors in mutant human amyloid precursor protein transgenic mice. Brain Res 1099(1):189–198PubMedCrossRefGoogle Scholar
  61. 61.
    Englisch HJ, Kunz G, Wenzel J (1974) Distribution of spines on the pyramidal neurons in the CA-1 region of the hippocampus in the rat. Z Mikrosk Anat Forsch 88(1):85–102PubMedGoogle Scholar
  62. 62.
    Lloyd SA et al (2003) Regional differences in cortical dendrite morphology following in utero exposure to cocaine. Brain Res Dev Brain Res 147(1–2):59–66PubMedCrossRefGoogle Scholar
  63. 63.
    Minkwitz HG, Holz L (1975) The ontogenetic development of pyramidal neurons in the hippocampus (CA1) of the rat. J Hirnforsch 16(1):37–54PubMedGoogle Scholar
  64. 64.
    Pokorny J, Yamamoto T (1981) Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons. Brain Res Bull 7(2):113–120PubMedCrossRefGoogle Scholar
  65. 65.
    Pokorny J, Yamamoto T (1981) Postnatal ontogenesis of hippocampal CA1 area in rats. II. Development of ultrastructure in stratum lacunosum and moleculare. Brain Res Bull 7(2):121–130PubMedCrossRefGoogle Scholar
  66. 66.
    Trommald M, Jensen V, Andersen P (1995) Analysis of dendritic spines in rat CA1 pyramidal cells intracellularly filled with a fluorescent dye. J Comp Neurol 353(2):260–274PubMedCrossRefGoogle Scholar
  67. 67.
    Stepanyants A, Tamas G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43(2):251–259PubMedCrossRefGoogle Scholar
  68. 68.
    Foh E et al (1973) Determination of quantitative parameters of the fine structure in the visual cortex of the cat, also a methodological contribution on measuring the neuropil (author’s transl). Microsc Acta 75(2):148–168PubMedGoogle Scholar
  69. 69.
    Bolstad I, Leergaard TB, Bjaalie JG (2007) Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence. Brain Struct Funct 212(1):85–93PubMedCrossRefGoogle Scholar
  70. 70.
    Hama K et al (2004) Tri-dimensional morphometric analysis of astrocytic processes with high voltage electron microscopy of thick Golgi preparations. J Neurocytol 33(3):277–285PubMedCrossRefGoogle Scholar
  71. 71.
    Oberheim NA et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287PubMedCrossRefGoogle Scholar
  72. 72.
    Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113(1):221–233PubMedCrossRefGoogle Scholar
  73. 73.
    Wenzel J et al (1991) The influence of long-term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain. Brain Res 560(1–2):122–131PubMedCrossRefGoogle Scholar
  74. 74.
    D’Ambrosio R et al (1998) Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18(12):4425–4438PubMedGoogle Scholar
  75. 75.
    Hof PR et al (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53(12):1075–1085PubMedCrossRefGoogle Scholar
  76. 76.
    Lehmenkuhler A et al (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55(2):339–351PubMedCrossRefGoogle Scholar
  77. 77.
    Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257PubMedGoogle Scholar
  78. 78.
    Sykova E et al (2005) Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102(2):479–484PubMedCrossRefGoogle Scholar
  79. 79.
    Sykova E et al (2005) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22(8):1873–1880PubMedCrossRefGoogle Scholar
  80. 80.
    Yao X et al (2008) Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J Neurosci 28(21):5460–5464PubMedCrossRefGoogle Scholar
  81. 81.
    Bell MA, Ball MJ (1985) Laminar variation in the microvascular architecture of normal human visual cortex (area 17). Brain Res 335(1):139–143PubMedCrossRefGoogle Scholar
  82. 82.
    Knox CA, Oliveira A (1980) Brain aging in normotensive and hypertensive strains of rats. III. A quantitative study of cerebrovasculature. Acta Neuropathol 52(1):17–25PubMedCrossRefGoogle Scholar
  83. 83.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318PubMedCrossRefGoogle Scholar
  84. 84.
    Cragg BG (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101(Pt 4):639–654PubMedGoogle Scholar
  85. 85.
    Spacek J, Hartmann M (1983) Three-dimensional analysis of dendritic spines. I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices. Anat Embryol (Berl) 167(2):289–310CrossRefGoogle Scholar
  86. 86.
    Stepanyants A et al (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci U S A 106(9):3555–3560PubMedCrossRefGoogle Scholar
  87. 87.
    Pelvig DP et al (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762PubMedCrossRefGoogle Scholar
  88. 88.
    Blinkov SM, Glezer II (1968) The human brain in figures and tables; a quantitative handbook. Basic Books, New YorkGoogle Scholar
  89. 89.
    Cerqueira JJ et al (2005) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800PubMedCrossRefGoogle Scholar
  90. 90.
    Boretius S et al (2009) In vivo MRI of altered brain anatomy and fiber connectivity in adult pax6 deficient mice. Cereb Cortex 19(12):2838–2847PubMedCrossRefGoogle Scholar
  91. 91.
    Borg J, Chereul E (2008) Differential MRI patterns of brain atrophy in double or single transgenic mice for APP and/or SOD. J Neurosci Res 86(15):3275–3284PubMedCrossRefGoogle Scholar
  92. 92.
    Ma Y et al (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135(4):1203–1215PubMedCrossRefGoogle Scholar
  93. 93.
    Maheswaran S et al (2009) Longitudinal regional brain volume changes quantified in normal aging and Alzheimer’s APP × PS1 mice using MRI. Brain Res 1270:19–32PubMedCrossRefGoogle Scholar
  94. 94.
    Sawiak SJ et al (2009) Use of magnetic resonance imaging for anatomical phenotyping of the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 33(1):12–19PubMedCrossRefGoogle Scholar
  95. 95.
    Donohue HS et al (2006) Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare CA1 rat hippocampus: a stereological and three-dimensional ultrastructural study. Neuroscience 140(2):597–606PubMedCrossRefGoogle Scholar
  96. 96.
    McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886(1–2):172–189PubMedCrossRefGoogle Scholar
  97. 97.
    Dalla C et al (2009) Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females. Neurosci Lett 449(1):52–56PubMedCrossRefGoogle Scholar
  98. 98.
    Pawlak R et al (2005) Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci U S A 102(50):18201–18206PubMedCrossRefGoogle Scholar
  99. 99.
    Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60(2):236–248PubMedCrossRefGoogle Scholar
  100. 100.
    Perez-Cruz C et al (2007) Morphology of pyramidal neurons in the rat prefrontal cortex: lateralized dendritic remodeling by chronic stress. Neural Plast 2007:46276PubMedCrossRefGoogle Scholar
  101. 101.
    Vyas A et al (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818PubMedGoogle Scholar
  102. 102.
    Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294PubMedCrossRefGoogle Scholar
  103. 103.
    Hill MN, Hillard CJ, McEwen BS (2011) Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb Cortex 21(9):2056–2064PubMedCrossRefGoogle Scholar
  104. 104.
    Johnson SA et al (2009) Lithium treatment prevents stress-induced dendritic remodeling in the rodent amygdala. Neuroscience 163(1):34–39PubMedCrossRefGoogle Scholar
  105. 105.
    Bennett MR, Farnell L, Gibson WG (2011) A model of NMDA receptor control of F-actin treadmilling in synaptic spines and their growth. Bull Math Biol 73(9):2109–2131PubMedCrossRefGoogle Scholar
  106. 106.
    Benes FM, Parks TN, Rubel EW (1977) Rapid dendritic atrophy following deafferentation: an EM morphometric analysis. Brain Res 122(1):1–13PubMedCrossRefGoogle Scholar
  107. 107.
    Griph S, Westman J (1977) Volume composition of the lateral cervical nucleus in the cat. I. A stereological and electron microscopical study of normal and deafferentated animals. J Neurocytol 6(6):723–743PubMedCrossRefGoogle Scholar
  108. 108.
    Deitch JS, Rubel EW (1989) Changes in neuronal cell bodies in N. laminaris during deafferentation-induced dendritic atrophy. J Comp Neurol 281(2):259–268PubMedCrossRefGoogle Scholar
  109. 109.
    Deitch JS, Rubel EW (1989) Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy. J Comp Neurol 281(2):234–258PubMedCrossRefGoogle Scholar
  110. 110.
    Sorensen SA, Rubel EW (2006) The level and integrity of synaptic input regulates dendrite structure. J Neurosci 26(5):1539–1550PubMedCrossRefGoogle Scholar
  111. 111.
    Somogyi J, Eysel U, Hamori J (1987) A quantitative study of morphological reorganization following chronic optic deafferentation in the adult cat dorsal lateral geniculate nucleus. J Comp Neurol 255(3):341–350PubMedCrossRefGoogle Scholar
  112. 112.
    Russell FA, Moore DR (1999) Effects of unilateral cochlear removal on dendrites in the gerbil medial superior olivary nucleus. Eur J Neurosci 11(4):1379–1390PubMedCrossRefGoogle Scholar
  113. 113.
    Frotscher M, Nitsch C, Hassler R (1981) Synaptic reorganization in the rabbit hippocampus after lesion of commissural afferents. Anat Embryol (Berl) 163(1):15–30CrossRefGoogle Scholar
  114. 114.
    Hoff SF (1986) Lesion-induced transneuronal plasticity in the adult rat hippocampus. Neuroscience 19(4):1227–1233PubMedCrossRefGoogle Scholar
  115. 115.
    Matthews DA, Cotman C, Lynch G (1976) An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res 115(1):1–21PubMedCrossRefGoogle Scholar
  116. 116.
    Matthews MA et al (1979) Spinal cord transection: a quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin. Neuropathol Appl Neurobiol 5(3):161–180PubMedCrossRefGoogle Scholar
  117. 117.
    Hamori J (1990) Morphological plasticity of postsynaptic neurones in reactive synaptogenesis. J Exp Biol 153:251–260PubMedGoogle Scholar
  118. 118.
    Wilhelmsson U et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103(46):17513–17518PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mustafa S. Kassem
    • 1
  • Jim Lagopoulos
    • 1
  • Tim Stait-Gardner
    • 2
  • William S. Price
    • 2
  • Tariq W. Chohan
    • 1
  • Jonathon C. Arnold
    • 1
  • Sean N. Hatton
    • 1
  • Maxwell R. Bennett
    • 1
    Email author
  1. 1.The Brain and Mind Research InstituteUniversity of SydneyCamperdownAustralia
  2. 2.Nanoscale Organisation and Dynamics GroupThe University of Western SydneyPenrithAustralia

Personalised recommendations