Skip to main content

Function and Dysfunction of α-Synuclein: Probing Conformational Changes and Aggregation by Single Molecule Fluorescence

Abstract

The aggregation and deposition of the neuronal protein α-synuclein in the substantia nigra region of the brain is a key pathological feature of Parkinson’s disease. α-Synuclein assembles from a monomeric state in solution, which lacks stable secondary and tertiary contacts, into highly structured fibrillar aggregates through a pathway which involves the population of multiple oligomeric species over a range of time scales. These features make α-synuclein well suited for study with single-molecule techniques, which are particularly useful for characterizing dynamic, heterogeneous samples. Here, we review the current literature featuring single-molecule fluorescence studies of α-synuclein and discuss how these studies have contributed to our understanding of both its function and its role in disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

AS:

α-Synuclein

PD:

Parkinson’s disease

NAC:

Nonamyloid beta component

FRET:

Förster resonance energy transfer

SDS:

Sodium dodecyl sulfate

CMC:

Critical micelle concentration

CD:

Circular dichroism

LUV:

Large unilamellar vesicle

FCS:

Fluorescence correlation spectroscopy

FIDA:

Fluorescence intensity distribution analysis

SIFT:

Scanning for intensely fluorescent targets

FCCS:

Fluorescence cross-correlation spectroscopy

FKBP:

FK506 binding protein

MMP:

Matrix metalloprotease

NBB:

N′-benzylidene-benzohydrazide

ETeff :

Energy transfer efficiency

References

  1. 1.

    Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S, Cookson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D, Petsko GA, Pochapsky TC, Hoang QQ (2011) A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 108(43):17797–17802

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu KN, Xu KX, Strathearn KE, Liu F, Cao SS, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, LaBaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3(4):e1867

    PubMed  Article  Google Scholar 

  10. 10.

    Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220

    PubMed  CAS  Google Scholar 

  11. 11.

    Kahle PJ, Neumann M, Ozmen L, Haass C (2000) Physiology and pathophysiology of alpha-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann N Y Acad Sci 920:33–41

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, Barlowe C, Lindquist S (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci U S A 105(1):145–150

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang YJ, Hay JC (2010) Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 21(11):1850–1863

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273(41):26292–26294

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Bodner CR, Maltsev AS, Dobson CM, Bax A (2010) Differential phospholipid binding of alpha-synuclein variants implicated in Parkinson’s disease revealed by solution NMR spectroscopy. Biochemistry 49(5):862–871

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322(5):1089–1102

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Giehm L, Svergun DI, Otzen DE, Vestergaard B (2011) Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci U S A: 3246–3251

  21. 21.

    van Rooijen BD, Claessens MMAE, Subramaniam V (2010) Membrane permeabilization by oligomeric α-synuclein: in search of the mechanism. PLoS One 5:e14292

    PubMed  Article  Google Scholar 

  22. 22.

    Yu J, Lyubchenko YL (2009) Early stages for Parkinson’s development: alpha-synuclein misfolding and aggregation. J Neuroimmune Pharmacol 4(1):10–16

    PubMed  Article  Google Scholar 

  23. 23.

    Sandal M, Valle F, Tessari I, Mammi S, Bergantino E, Musiani F, Brucale M, Bubacco L, Samori B (2008) Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biol 6(1):e6

    PubMed  Article  Google Scholar 

  24. 24.

    Losasso V, Pietropaolo A, Zannoni C, Gustincich S, Carloni P (2011) Structural role of compensatory amino acid replacements in the alpha-synuclein protein. Biochemistry 50(32):6994–7001

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Tsigelny IF, Sharikov Y, Miller MA, Masliah E (2008) Mechanism of alpha-synuclein oligomerization and membrane interaction: theoretical approach to unstructured proteins studies. Nanomedicine 4(4):350–357

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Yoon J, Jang S, Lee K, Shin S (2009) Simulation studies on the stabilities of aggregates formed by fibril-forming segments of alpha-synuclein. J Biomol Struct Dyn 27(3):259–270

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ferreon AC, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci U S A 106(14):5645–5650

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Ferreon AC, Moran CR, Ferreon JC, Deniz AA (2010) Alteration of the alpha-synuclein folding landscape by a mutation related to Parkinson’s disease. Angew Chem 49(20):3469–3472

    Article  CAS  Google Scholar 

  29. 29.

    Gambin Y, VanDelinder V, Ferreon AC, Lemke EA, Groisman A, Deniz AA (2011) Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat Methods 8(3):239–241

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Vandelinder V, Ferreon AC, Gambin Y, Deniz AA, Groisman A (2009) High-resolution temperature-concentration diagram of alpha-synuclein conformation obtained from a single Förster resonance energy transfer image in a microfluidic device. Anal Chem 81(16):6929–6935

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Ferreon AC, Deniz AA (2007) Alpha-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation. Biochemistry 46(15):4499–4509

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Chen H, Rhoades E (2008) Fluorescence characterization of denatured proteins. Curr Opin Struct Biol 18(4):516–524

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Ferreon AC, Moran CR, Gambin Y, Deniz AA (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18(1):16–26

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Trexler AJ, Rhoades E (2010) Single molecule characterization of alpha-synuclein in aggregation-prone states. Biophys J 99(9):3048–3055

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Sherman E, Haran G (2006) Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci U S A 103(31):11539–11543

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280(10):9595–9603

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Bussell R Jr, Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329(4):763–778

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130(39):12856–12857

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci U S A 101(22):8331–8336

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105(50):19666–19671

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Borbat P, Ramlall TF, Freed JH, Eliezer D (2006) Inter-helix distances in lysophospholipid micelle-bound alpha-synuclein from pulsed ESR measurements. J Am Chem Soc 128(31):10004–10005

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278(17):15313–15318

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Drescher M, van Rooijen BD, Veldhuis G, Subramaniam V, Huber M. A stable lipid-induced aggregate of alpha-synuclein. J Am Chem Soc 132(12): 4080–4082

  47. 47.

    Veldhuis G, Segers-Nolten I, Ferlemann E, Subramaniam V (2009) Single-molecule FRET reveals structural heterogeneity of SDS-bound alpha-synuclein. ChemBioChem 10(3):436–439

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Trexler AJ, Rhoades E (2009) Alpha-synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48(11):2304–2306

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Nath A, Trexler AJ, Koo P, Miranker AD, Atkins WM, Rhoades E (2010) Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs. Methods Enzymol 472:89–117

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Giehm L, Oliveira CL, Christiansen G, Pedersen JS, Otzen DE (2010) SDS-induced fibrillation of alpha-synuclein: an alternative fibrillation pathway. J Mol Biol 401(1):115–133

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Lee HJ, Choi C, Lee SJ (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277(1):671–678

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Zhu M, Fink AL (2003) Lipid binding inhibits alpha-synuclein fibril formation. J Biol Chem 278(19):16873–16877

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Zhu M, Li J, Fink AL (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278(41):40186–40197

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Comellas G, Lemkau LR, Zhou DH, George JM, Rienstra CM (2012) Structural intermediates during alpha-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 134(11):5090–5099

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative modifications to alpha-synuclein act distally to regulate membrane binding. J Am Chem Soc 133(18):7152–7158

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294(5545):1346–1349

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Kaylor J, Bodner N, Edridge S, Yamin G, Hong DP, Fink AL (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 353(2):357–372

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40(26):7812–7819

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Zakharov SD, Hulleman JD, Dutseva EA, Antonenko YN, Rochet JC, Cramer WA (2007) Helical alpha-synuclein forms highly conductive ion channels. Biochemistry 46(50):14369–14379

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283(44):29639–29643

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284(7):4230–4237

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Nath S, Meuvis J, Hendrix J, Carl SA, Engelborghs Y (2010) Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys J 98(7):1302–1311

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Bisaglia M, Mammi S, Bubacco L (2009) Structural insights on physiological functions and pathological effects of alpha-synuclein. FASEB J 23(2):329–340

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Fink AL (2006) The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39(9):628–634

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 107(17):7710–7715

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT Jr (2000) Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920:42–45

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11(3):213–228

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC (2002) The channel hypothesis of Alzheimer’s disease: current status. Peptides 23(7):1311–1315

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37(4):583–595

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ (2001) Alpha-synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci U S A 98(16):9110–9115

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Yamin G, Uversky VN, Fink AL (2003) Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Lett 542(1–3):147–152

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, Lyubchenko YL, Fink AL (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134(1):84–102

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Uversky VN, Yamin G, Souillac PO, Goers J, Glaser CB, Fink AL (2002) Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 517(1–3):239–244

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Cole NB, Murphy DD, Lebowitz J, Di Noto L, Levine RL, Nussbaum RL (2005) Metal-catalyzed oxidation of alpha-synuclein: helping to define the relationship between oligomers, protofibrils, and filaments. J Biol Chem 280(10):9678–9690

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Nielsen MS, Vorum H, Lindersson E, Jensen PH (2001) Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J Biol Chem 276(25):22680–22684

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283(16):10992–11003

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Pham CL, Leong SL, Ali FE, Kenche VB, Hill AF, Gras SL, Barnham KJ, Cappai R (2009) Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner. J Mol Biol 387(3):771–785

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Zhou W, Gallagher A, Hong DP, Long C, Fink AL, Uversky VN (2009) At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to alpha-synuclein and prevents its fibrillation. J Mol Biol 388(3):597–610

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Giese A, Bader B, Bieschke J, Schaffar G, Odoy S, Kahle PJ, Haass C, Kretzschmar H (2005) Single particle detection and characterization of synuclein co-aggregation. Biochem Biophys Res Commun 333(4):1202–1210

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  84. 84.

    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  86. 86.

    Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101(12):2855–2870

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2(11):2842–2856

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Bieschke J, Giese A, Schulz-Schaeffer W, Zerr I, Poser S, Eigen M, Kretzschmar H (2000) Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc Natl Acad Sci U S A 97(10):5468–5473

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Kask P, Palo K, Ullmann D, Gall K (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci U S A 96(24):13756–13761

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Gerard M, Debyser Z, Desender L, Kahle PJ, Baert J, Baekelandt V, Engelborghs Y (2006) The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy. FASEB J 20(3):524–526

    PubMed  CAS  Google Scholar 

  92. 92.

    Levin J, Giese A, Boetzel K, Israel L, Hogen T, Nubling G, Kretzschmar H, Lorenzl S (2009) Increased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Exp Neurol 215(1):201–208

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Hillmer AS, Putcha P, Levin J, Hogen T, Hyman BT, Kretzschmar H, McLean PJ, Giese A (2010) Converse modulation of toxic alpha-synuclein oligomers in living cells by N′-benzylidene-benzohydrazide derivates and ferric iron. Biochem Biophys Res Commun 391(1):461–466

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Caruana M, Hogen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of alpha-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585(8):1113–1120

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Nath A, Sammalkorpi MT, DeWitt D, Schreck C, Trexler AJ, Elbaum-Garfinkle S, O’Hern CS, Rhoades E (2012) The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations. Biophys J (in press)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Rhoades.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trexler, A.J., Rhoades, E. Function and Dysfunction of α-Synuclein: Probing Conformational Changes and Aggregation by Single Molecule Fluorescence. Mol Neurobiol 47, 622–631 (2013). https://doi.org/10.1007/s12035-012-8338-x

Download citation

Keywords

  • Single-molecule fluorescence
  • Aggregation
  • Amyloid
  • Oligomers
  • Parkinson’s disease