Skip to main content

Neural Regeneration: Lessons from Regenerating and Non-regenerating Systems

Abstract

One only needs to see a salamander regrowing a lost limb to become fascinated by regeneration. However, the lack of robust axonal regeneration models for which good cellular and molecular tools exist has hampered progress in the field. Nevertheless, the nervous system has been revealed to be an excellent model to investigate regeneration. There are conspicuous differences in neuroregeneration capacity between amphibia and warm-blooded animals, as well as between the central and the peripheral nervous systems in mammals. Exploration of such discrepancies led to significant discoveries on the basic tenets of neuroregeneration in the last two decades, identifying several positive and negative regulators of axonal regeneration. Implications of these findings to the comprehension of mammalian regeneration and to the development of spinal cord injury therapies are also addressed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549

    PubMed  CAS  Article  Google Scholar 

  2. Birnbaum KD, Sanchez Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710

    PubMed  CAS  Article  Google Scholar 

  3. Ferretti P, Zhang F, O'Neill P (2003) Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn 226:245–256

    PubMed  Article  Google Scholar 

  4. Endo T, Yoshino J, Kado K, Tochinai S (2007) Brain regeneration in anuran amphibians. Dev Growth Differ 49:121–129

    PubMed  Article  Google Scholar 

  5. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562

    PubMed  CAS  Article  Google Scholar 

  6. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134

    PubMed  CAS  Article  Google Scholar 

  7. Keirstead HS, Hasan SJ, Muir GD, Steeves JD (1992) Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proc Natl Acad Sci USA 89:11664–11668

    PubMed  CAS  Article  Google Scholar 

  8. Yoshino J, Tochinai S (2004) Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis. Dev Growth Differ 46:523–534

    PubMed  Article  Google Scholar 

  9. Kumar A, Delgado JP, Gates PB, Neville G, Forge A, Brockes JP (2011) The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration. Proc Natl Acad Sci U S A 108:13588–13593

    PubMed  CAS  Article  Google Scholar 

  10. Yoshino J, Tochinai S (2006) Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae. Dev Growth Differ 48:15–24

    PubMed  Article  Google Scholar 

  11. Gong Q, Shipley MT (1995) Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb. Neuron 14:91–101

    PubMed  CAS  Article  Google Scholar 

  12. Iten LE, Bryant SV (1976) Stages of tail regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 196:283–292

    PubMed  CAS  Article  Google Scholar 

  13. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    PubMed  CAS  Article  Google Scholar 

  14. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    PubMed  CAS  Article  Google Scholar 

  15. Gross CG (2009) Three before their time: neuroscientists whose ideas were ignored by their contemporaries. Exp Brain Res 192:321–334

    PubMed  Article  Google Scholar 

  16. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    PubMed  CAS  Article  Google Scholar 

  17. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    PubMed  CAS  Article  Google Scholar 

  18. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    PubMed  CAS  Article  Google Scholar 

  19. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    PubMed  CAS  Article  Google Scholar 

  20. Decimo I, Bifari F, Francisco JR, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G (2011) Nestin- and DCX-positive cells reside in adult spinal cord meninges and participate to injury-induced parenchymal reaction. Stem Cells 29:2062–76

    PubMed  CAS  Article  Google Scholar 

  21. Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11:176–187

    PubMed  CAS  Article  Google Scholar 

  22. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    PubMed  CAS  Article  Google Scholar 

  23. Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8:583–596

    PubMed  CAS  Article  Google Scholar 

  24. Hu X, Cai J, Yang J, Smith GM (2010) Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol 223:153–165

    PubMed  CAS  Article  Google Scholar 

  25. Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309:791–793

    PubMed  CAS  Article  Google Scholar 

  26. Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23:83–91

    PubMed  CAS  Article  Google Scholar 

  27. Neumann S, Skinner K, Basbaum AI (2005) Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc Natl Acad Sci U S A 102:16848–16852

    PubMed  CAS  Article  Google Scholar 

  28. Ylera B, Erturk A, Hellal F, Nadrigny F, Hurtado A, Tahirovic S, Oudega M, Kirchhoff F, Bradke F (2009) Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol 19:930–936

    PubMed  CAS  Article  Google Scholar 

  29. Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34:885–893

    PubMed  CAS  Article  Google Scholar 

  30. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34:895–903

    PubMed  CAS  Article  Google Scholar 

  31. Hannila SS, Filbin MT (2008) The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209:321–332

    PubMed  CAS  Article  Google Scholar 

  32. Costigan M, Befort K, Karchewski L, Griffin RS, D'Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16

    PubMed  Article  Google Scholar 

  33. Goldberg JL (2003) How does an axon grow? Genes Dev 17:941–958

    PubMed  CAS  Article  Google Scholar 

  34. Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van Minnen J, Twiss JL, Fainzilber M (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40:1095–1104

    PubMed  CAS  Article  Google Scholar 

  35. Perlson E, Hanz S, Medzihradszky KF, Burlingame AL, Fainzilber M (2004) From snails to sciatic nerve: retrograde injury signaling from axon to soma in lesioned neurons. J Neurobiol 58:287–294

    PubMed  Article  Google Scholar 

  36. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45:715–726

    PubMed  CAS  Article  Google Scholar 

  37. Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, Avantaggiati ML, Faden AI (2006) The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 25:4084–4096

    PubMed  Article  CAS  Google Scholar 

  38. Floriddia E, Nguyen T, Di Giovanni S (2012) Chromatin immunoprecipitation from dorsal root ganglia tissue following axonal injury. J Vis Exp (in press)

  39. Moore DL, Goldberg JL (2011) Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 71:1186–1211

    PubMed  CAS  Article  Google Scholar 

  40. Filbin MT (2006) Recapitulate development to promote axonal regeneration: good or bad approach? Philos Trans R Soc Lond B Biol Sci 361:1565–1574

    PubMed  CAS  Article  Google Scholar 

  41. Richardson PM (1991) Neurotrophic factors in regeneration. Curr Opin Neurobiol 1:401–406

    PubMed  CAS  Article  Google Scholar 

  42. Gordon T (2009) The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 26:E3

    PubMed  Article  Google Scholar 

  43. Hollis ER 2nd, Jamshidi P, Low K, Blesch A, Tuszynski MH (2009) Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci USA 106:7215–7220

    PubMed  CAS  Article  Google Scholar 

  44. Aguayo AJ, Epps J, Charron L, Bray GM (1976) Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res 104:1–20

    PubMed  CAS  Article  Google Scholar 

  45. Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288:61–75

    PubMed  CAS  Article  Google Scholar 

  46. Ide C (1983) Nerve regeneration and Schwann cell basal lamina: observations of the long-term regeneration. Arch Histol Jpn 46:243–257

    PubMed  CAS  Article  Google Scholar 

  47. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    PubMed  CAS  Article  Google Scholar 

  48. Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565

    PubMed  Article  Google Scholar 

  49. Levy D, Hoke A, Zochodne DW (1999) Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci Lett 260:207–209

    PubMed  CAS  Article  Google Scholar 

  50. Levy D, Kubes P, Zochodne DW (2001) Delayed peripheral nerve degeneration, regeneration, and pain in mice lacking inducible nitric oxide synthase. J Neuropathol Exp Neurol 60:411–421

    PubMed  CAS  Google Scholar 

  51. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181:625–637

    PubMed  CAS  Article  Google Scholar 

  52. Schotte OE, Butler EG (1941) Morphological effects of denervation and amputation of limbs in urodele larvae. J Exp Zool 87:279–322

    Article  Google Scholar 

  53. Satoh A, Gardiner DM, Bryant SV, Endo T (2007) Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Dev Biol 312:231–244

    PubMed  CAS  Article  Google Scholar 

  54. Satoh A, Bryant SV, Gardiner DM (2008) Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healing and limb regeneration in the axolotl. Dev Growth Differ 50:743–754

    PubMed  CAS  Article  Google Scholar 

  55. Stocum DL (1984) The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation 27:13–28

    PubMed  CAS  Article  Google Scholar 

  56. da Silva SM, Gates PB, Brockes JP (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3:547–555

    PubMed  Article  Google Scholar 

  57. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777

    PubMed  CAS  Article  Google Scholar 

  58. Blassberg RA, Garza-Garcia A, Janmohamed A, Gates PB, Brockes JP (2011) Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J Cell Sci 124:47–56

    PubMed  CAS  Article  Google Scholar 

  59. Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535

    PubMed  Article  Google Scholar 

  60. Yntema CL (1959) Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae. J Exp Zool 140:101–123

    PubMed  CAS  Article  Google Scholar 

  61. Becker RO (1960) The bioelectric field pattern in the salamander and its simulation by an electronic analog. IRE Trans Med Electron ME-7:202–207

    PubMed  CAS  Article  Google Scholar 

  62. Levin M (2007) Large-scale biophysics: ion flows and regeneration. Trends Cell Biol 17:261–270

    PubMed  CAS  Article  Google Scholar 

  63. Messerli MA, Graham DM (2011) Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221:79–92

    PubMed  CAS  Google Scholar 

  64. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442:457–460

    PubMed  CAS  Article  Google Scholar 

  65. Britland S, McCaig C (1996) Embryonic Xenopus neurites integrate and respond to simultaneous electrical and adhesive guidance cues. Exp Cell Res 226:31–38

    PubMed  CAS  Article  Google Scholar 

  66. Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216:527–535

    PubMed  CAS  Article  Google Scholar 

  67. Becker RO (1961) The bioelectric factors in amphibian-limb regeneration. J Bone Joint Surg Am 43-A:643–656

    PubMed  CAS  Google Scholar 

  68. Borgens RB (1984) Are limb development and limb regeneration both initiated by an integumentary wounding? A hypothesis. Differentiation 28:87–93

    PubMed  CAS  Article  Google Scholar 

  69. Becker RO (1972) Stimulation of partial limb regeneration in rats. Nature 235:109–111

    PubMed  CAS  Article  Google Scholar 

  70. Becker RO, Spadaro JA (1972) Electrical stimulation of partial limb regeneration in mammals. Bull N Y Acad Med 48:627–641

    PubMed  CAS  Google Scholar 

  71. Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20:427–434

    PubMed  CAS  Article  Google Scholar 

  72. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    PubMed  CAS  Article  Google Scholar 

  73. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966

    PubMed  CAS  Article  Google Scholar 

  74. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    PubMed  CAS  Article  Google Scholar 

  75. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    PubMed  Article  CAS  Google Scholar 

  76. Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480:372–375

    PubMed  CAS  Article  Google Scholar 

  77. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM (1999) Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146:389–403

    PubMed  CAS  Article  Google Scholar 

  78. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087–1096

    PubMed  CAS  Article  Google Scholar 

  79. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334

    PubMed  CAS  Article  Google Scholar 

  80. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    PubMed  CAS  Article  Google Scholar 

  81. Kohout SC, Bell SC, Liu L, Xu Q, Minor DL Jr, Isacoff EY (2010) Electrochemical coupling in the voltage-dependent phosphatase Ci-VSP. Nat Chem Biol 6:369–375

    PubMed  CAS  Article  Google Scholar 

  82. Ratzan WJ, Evsikov AV, Okamura Y, Jaffe LA (2011) Voltage sensitive phosphoinositide phosphatases of Xenopus: their tissue distribution and voltage dependence. J Cell Physiol 226:2740–2746

    PubMed  CAS  Article  Google Scholar 

  83. Wu Y, Dowbenko D, Pisabarro MT, Dillard-Telm L, Koeppen H, Lasky LA (2001) PTEN 2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase. J Biol Chem 276:21745–21753

    PubMed  CAS  Article  Google Scholar 

  84. Walker SM, Downes CP, Leslie NR (2001) TPIP: a novel phosphoinositide 3-phosphatase. Biochem J 360:277–283

    PubMed  CAS  Article  Google Scholar 

  85. Aguayo AJ, Dickson R, Trecarten J, Attiwell M, Bray GM, Richardson P (1978) Ensheathment and myelination of regenerating PNS fibres by transplanted optic nerve glia. Neurosci Lett 9:97–104

    PubMed  CAS  Article  Google Scholar 

  86. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    PubMed  CAS  Article  Google Scholar 

  87. David S, Aguayo AJ (1985) Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. J Neurocytol 14:1–12

    PubMed  CAS  Article  Google Scholar 

  88. Savio T, Schwab ME (1990) Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord. Proc Natl Acad Sci U S A 87:4130–4133

    PubMed  CAS  Article  Google Scholar 

  89. Caroni P, Schwab ME (1988) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106:1281–1288

    PubMed  CAS  Article  Google Scholar 

  90. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    PubMed  CAS  Article  Google Scholar 

  91. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439

    PubMed  CAS  Article  Google Scholar 

  92. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811

    PubMed  CAS  Article  Google Scholar 

  93. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    PubMed  CAS  Article  Google Scholar 

  94. Bartsch U (1996) Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein. J Neurocytol 25:303–313

    PubMed  CAS  Article  Google Scholar 

  95. Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    PubMed  CAS  Google Scholar 

  96. Nguyen T, Mehta NR, Conant K, Kim KJ, Jones M, Calabresi PA, Melli G, Hoke A, Schnaar RL, Ming GL, Song H, Keswani SC, Griffin JW (2009) Axonal protective effects of the myelin-associated glycoprotein. J Neurosci 29:630–637

    PubMed  CAS  Article  Google Scholar 

  97. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346

    PubMed  CAS  Article  Google Scholar 

  98. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    PubMed  CAS  Article  Google Scholar 

  99. Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6:461–467

    PubMed  CAS  Google Scholar 

  100. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228

    PubMed  CAS  Article  Google Scholar 

  101. Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, Garcia KC, He Z (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45:345–351

    PubMed  CAS  Article  Google Scholar 

  102. Bartsch U, Bandtlow CE, Schnell L, Bartsch S, Spillmann AA, Rubin BP, Hillenbrand R, Montag D, Schwab ME, Schachner M (1995) Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15:1375–1381

    PubMed  CAS  Article  Google Scholar 

  103. Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378:498–501

    PubMed  CAS  Article  Google Scholar 

  104. Kottis V, Thibault P, Mikol D, Xiao ZC, Zhang R, Dergham P, Braun PE (2002) Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem 82:1566–1569

    PubMed  CAS  Article  Google Scholar 

  105. Ji B, Case LC, Liu K, Shao Z, Lee X, Yang Z, Wang J, Tian T, Shulga-Morskaya S, Scott M, He Z, Relton JK, Mi S (2008) Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury. Mol Cell Neurosci 39:258–267

    PubMed  CAS  Article  Google Scholar 

  106. Cafferty WB, Duffy P, Huebner E, Strittmatter SM (2010) MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 30:6825–6837

    PubMed  CAS  Article  Google Scholar 

  107. Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, Kang B, Zheng B (2010) Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 66:663–670

    PubMed  CAS  Article  Google Scholar 

  108. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    PubMed  CAS  Article  Google Scholar 

  109. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    PubMed  CAS  Article  Google Scholar 

  110. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    PubMed  Article  CAS  Google Scholar 

  111. Frisen J, Haegerstrand A, Risling M, Fried K, Johansson CB, Hammarberg H, Elde R, Hokfelt T, Cullheim S (1995) Spinal axons in central nervous system scar tissue are closely related to laminin-immunoreactive astrocytes. Neuroscience 65:293–304

    PubMed  CAS  Article  Google Scholar 

  112. McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    PubMed  CAS  Article  Google Scholar 

  113. Jones LL, Sajed D, Tuszynski MH (2003) Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci 23:9276–9288

    PubMed  CAS  Google Scholar 

  114. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    PubMed  CAS  Article  Google Scholar 

  115. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241

    PubMed  CAS  Article  Google Scholar 

  116. McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411

    PubMed  CAS  Google Scholar 

  117. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683

    PubMed  CAS  Google Scholar 

  118. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    PubMed  CAS  Article  Google Scholar 

  119. Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822

    PubMed  CAS  Google Scholar 

  120. McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778–10788

    PubMed  CAS  Google Scholar 

  121. Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 22:2792–2803

    PubMed  CAS  Google Scholar 

  122. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411

    PubMed  CAS  Article  Google Scholar 

  123. Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J, Flanagan JG (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596

    PubMed  CAS  Article  Google Scholar 

  124. Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, Sheng M, Silver J, Li S (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31:14051–14066

    PubMed  CAS  Article  Google Scholar 

  125. Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102:14069–14074

    PubMed  CAS  Article  Google Scholar 

  126. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725

    PubMed  CAS  Article  Google Scholar 

  127. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    PubMed  CAS  Article  Google Scholar 

  128. Nordqvist C (2011) Spinal cord injury stem cell trial gets $25 million award from CIRM. Med News Today.

  129. Nordqvist C (2011) Geron abandons stem cell programs. Med News Today.

  130. Whishaw IQ, Pellis SM, Gorny B, Kolb B, Tetzlaff W (1993) Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions. Behav Brain Res 56:59–76

    PubMed  CAS  Article  Google Scholar 

  131. Metz GA, Dietz V, Schwab ME, van de Meent H (1998) The effects of unilateral pyramidal tract section on hindlimb motor performance in the rat. Behav Brain Res 96:37–46

    PubMed  CAS  Article  Google Scholar 

  132. Barthelemy D, Grey MJ, Nielsen JB, Bouyer L (2011) Involvement of the corticospinal tract in the control of human gait. Prog Brain Res 192:181–197

    PubMed  Article  Google Scholar 

  133. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    PubMed  CAS  Article  Google Scholar 

  134. Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    PubMed  CAS  Google Scholar 

  135. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    PubMed  CAS  Google Scholar 

  136. Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19:4370–4387

    PubMed  CAS  Google Scholar 

  137. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551

    PubMed  CAS  Article  Google Scholar 

  138. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2006) Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 12:790–792

    PubMed  CAS  Article  Google Scholar 

  139. Freund P, Wannier T, Schmidlin E, Bloch J, Mir A, Schwab ME, Rouiller EM (2007) Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey. J Comp Neurol 502:644–659

    PubMed  CAS  Article  Google Scholar 

  140. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2009) Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates—re-examination and extension of behavioral data. Eur J Neurosci 29:983–996

    PubMed  Article  Google Scholar 

  141. Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198(Suppl 1):E22–E34

    PubMed  Article  Google Scholar 

  142. Usher LC, Johnstone A, Erturk A, Hu Y, Strikis D, Wanner IB, Moorman S, Lee JW, Min J, Ha HH, Duan Y, Hoffman S, Goldberg JL, Bradke F, Chang YT, Lemmon VP, Bixby JL (2010) A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J Neurosci 30:4693–4706

    PubMed  CAS  Article  Google Scholar 

  143. Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin MT, Blesch A, Tuszynski MH (2009) Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration 1 year after spinal cord injury. Neuron 64:165–172

    PubMed  CAS  Article  Google Scholar 

  144. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH (2004) Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24:6402–6409

    PubMed  CAS  Article  Google Scholar 

  145. Garcia-Alias G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12:1145–1151

    PubMed  CAS  Article  Google Scholar 

  146. Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW (2011) Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 31:9332–9344

    PubMed  CAS  Article  Google Scholar 

  147. Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J (2006) Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 26:7405–7415

    PubMed  CAS  Article  Google Scholar 

  148. Alilain WJ, Horn KP, Hu H, Dick TE, Silver J (2011) Functional regeneration of respiratory pathways after spinal cord injury. Nature 475:196–200

    PubMed  CAS  Article  Google Scholar 

  149. Garcia-Alias G, Petrosyan HA, Schnell L, Horner PJ, Bowers WJ, Mendell LM, Fawcett JW, Arvanian VL (2011) Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J Neurosci 31:17788–17799

    PubMed  CAS  Article  Google Scholar 

  150. Cone CD Jr, Cone CM (1976) Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192:155–158

    PubMed  CAS  Article  Google Scholar 

  151. Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodgers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10

    PubMed  Article  Google Scholar 

  152. Czupryn A, Zhou YD, Chen X, McNay D, Anderson MP, Flier JS, Macklis JD (2011) Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334:1133–1137

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Prof. John Dowling for insightful discussions. We would like to thank the Hertie Foundation, the DFG (DI 14931), and WFL research grants (awarded to SDG).

Conflict of interest

The authors declare no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo M. R. Ferreira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferreira, L.M.R., Floriddia, E.M., Quadrato, G. et al. Neural Regeneration: Lessons from Regenerating and Non-regenerating Systems. Mol Neurobiol 46, 227–241 (2012). https://doi.org/10.1007/s12035-012-8290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8290-9

Keywords

  • Axonal regeneration
  • Biocurrents
  • Therapies