Skip to main content

Advertisement

Log in

A New Trend in the Experimental Methodology for the Analysis of the Thioflavin T Binding to Amyloid Fibrils

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The studies on the determination of the characteristics of the amyloid fibril interaction with the dye were based on the analysis of the dependence of the ThT fluorescence intensity on its concentration in the solution containing the amyloid fibrils. In the present work, we revealed that this intuitive approach provided erroneous data. We propose a new approach which provides a means for characterizing the interaction of thioflavin T (ThT) with amyloid fibrils and for determining the binding stoichiometry and binding constants, absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to the sites of different binding modes of fibrils. The key point of this approach is sample preparation by equilibrium microdialysis. The efficiency of the proposed approach is demonstrated via the examination of the ThT binding to insulin and Aβ42 fibrils as well as to the native form of the Electrophorus electricus acetylcholinesterase. We show that the peculiarities of ThT interaction with amyloid fibrils depend on the amyloidogenic protein and on the binding mode. This approach is universal and can be used for the analysis of binding mechanism of any dye that interacts with its receptor. Therefore, the proposed approach represents an important addition to the existing arsenal of means for the diagnostics and therapy of the neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332

    Article  PubMed  CAS  Google Scholar 

  2. Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890

    Article  PubMed  CAS  Google Scholar 

  3. LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2(3):404–410

    Article  PubMed  CAS  Google Scholar 

  4. LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  5. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177(2):244–249

    Article  PubMed  CAS  Google Scholar 

  6. Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  PubMed  CAS  Google Scholar 

  7. Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14(1):96–103

    Article  PubMed  CAS  Google Scholar 

  8. Sulatskaya AI, Kuznetsova IM, Maskevich AA, Uversky VN, Turoverov KK (2010) Non-radiative deactivation of the excited state of thioflavin T: dependence on solvent viscosity and temperature. PLoS One 5(10):e15385

    Article  PubMed  Google Scholar 

  9. Sulatskaya AI, Kuznetsova IM, Turoverov KK (2012) Interaction of thioflavin T with amyloid fibrils: fluorescence quantum yield of bound dye. J Phys Chem B 116(8):2538–2544

    Article  PubMed  CAS  Google Scholar 

  10. Groenning M (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol 3(1):1–18

    Article  Google Scholar 

  11. Oravcova J, Bohs B, Lindner W (1996) Drug–protein binding sites. New trends in analytical and experimental methodology. J Chromatogr B Biomed Appl 677(1):1–28

    Article  PubMed  Google Scholar 

  12. Voropay ES, Samtsov MP, Kaplevsky KN, Maskevich AA, Stepuro VI, Povarova OI, Kuznetsova IM, Turoverov KK, Fink AL, Uversky VN (2003) Spectral properties of Thioflavin T and its complexes with amyloid fibrils. J Appl Spectrosc 70(6):868–874

    Article  Google Scholar 

  13. Goers J, Permyakov SE, Permyakov EA, Uversky VN, Fink AL (2002) Conformational prerequisites for alpha-lactalbumin fibrillation. Biochemistry 41(41):12546–12551

    Article  PubMed  CAS  Google Scholar 

  14. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18

    Article  PubMed  Google Scholar 

  15. De Ferrari GV, Mallender WD, Inestrosa NC, Rosenberry TL (2001) Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J Biol Chem 276(26):23282–23287

    Article  PubMed  Google Scholar 

  16. Turoverov KK, Biktashev AG, Dorofeiuk AV, Kuznetsova IM (1998) A complex of apparatus and programs for the measurement of spectral, polarization and kinetic characteristics of fluorescence in solution. Tsitologiia 40(8–9):806–817

    PubMed  CAS  Google Scholar 

  17. Sulatskaya AI, Kuznetsova IM, Turoverov KK (2011) Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. J Phys Chem B 115(39):11519–11524

    Article  PubMed  CAS  Google Scholar 

  18. Dzwolak W, Pecul M (2005) Chiral bias of amyloid fibrils revealed by the twisted conformation of Thioflavin T: an induced circular dichroism/DFT study. FEBS Lett 579(29):6601–6603

    Article  PubMed  CAS  Google Scholar 

  19. Uversky VN, Winter S, Lober G (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 60(3):79–88

    Article  PubMed  CAS  Google Scholar 

  20. Uversky VN, Winter S, Lober G (1998) Self-association of 8-anilino-1-naphthalene-sulfonate molecules: spectroscopic characterization and application to the investigation of protein folding. Biochim Biophys Acta 1388:133–142

    Article  PubMed  CAS  Google Scholar 

  21. Groenning M, Norrman M, Flink JM, van de Weert M, Bukrinsky JT, Schluckebier G, Frokjaer S (2007) Binding mode of Thioflavin T in insulin amyloid fibrils. J Struct Biol 159(3):483–497

    Article  PubMed  CAS  Google Scholar 

  22. Groenning M, Olsen L, van de Weert M, Flink JM, Frokjaer S, Jorgensen FS (2007) Study on the binding of Thioflavin T to beta-sheet-rich and non-beta-sheet cavities. J Struct Biol 158(3):358–369

    Article  PubMed  CAS  Google Scholar 

  23. Fodera V, Groenning M, Vetri V, Librizzi F, Spagnolo S, Cornett C, Olsen L, van de Weert M, Leone M (2008) Thioflavin T hydroxylation at basic pH and its effect on amyloid fibril detection. J Phys Chem B 112(47):15174–15181

    Article  PubMed  CAS  Google Scholar 

  24. Morimoto K, Kawabata K, Kunii S, Hamano K, Saito T, Tonomura B (2009) Characterization of type I collagen fibril formation using thioflavin T fluorescent dye. J Biochem 145(5):677–684

    Article  PubMed  CAS  Google Scholar 

  25. Sabate R, Lascu I, Saupe SJ (2008) On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2. J Struct Biol 162(3):387–396

    Article  PubMed  CAS  Google Scholar 

  26. LeVine H 3rd (1997) Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1–40) amyloid fibrils. Arch Biochem Biophys 342(2):306–316

    Article  PubMed  CAS  Google Scholar 

  27. Lockhart A, Ye L, Judd DB, Merritt AT, Lowe PN, Morgenstern JL, Hong G, Gee AD, Brown J (2005) Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer’s disease PET imaging agents on beta-amyloid peptide fibrils. J Biol Chem 280(9):7677–7684

    Article  PubMed  CAS  Google Scholar 

  28. Ye L, Morgenstern JL, Gee AD, Hong G, Brown J, Lockhart A (2005) Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils. J Biol Chem 280(25):23599–23604

    Article  PubMed  CAS  Google Scholar 

  29. Ye L, Velasco A, Fraser G, Beach TG, Sue L, Osredkar T, Libri V, Spillantini MG, Goedert M, Lockhart A (2008) In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J Neurochem 105(4):1428–1437

    Article  PubMed  CAS  Google Scholar 

  30. Sutharsan J, Dakanali M, Capule CC, Haidekker MA, Yang J, Theodorakis EA (2010) Rational design of amyloid binding agents based on the molecular rotor motif. Chem Med Chem 5(1):56–60

    PubMed  CAS  Google Scholar 

  31. Krebs MR, Bromley EH, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149(1):30–37

    Article  PubMed  CAS  Google Scholar 

  32. Wu C, Biancalana M, Koide S, Shea JE (2009) Binding modes of thioflavin-T to the single-layer beta-sheet of the peptide self-assembly mimics. J Mol Biol 394(4):627–633

    Article  PubMed  CAS  Google Scholar 

  33. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412

    PubMed  CAS  Google Scholar 

  34. Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385(4):1052–1063

    Article  PubMed  CAS  Google Scholar 

  35. Kitts CC, Vanden Bout DA (2009) Near-field scanning optical microscopy measurements of fluorescent molecular probes binding to insulin amyloid fibrils. J Phys Chem B 113(35):12090–12095

    Article  PubMed  CAS  Google Scholar 

  36. Turoverov KK, Kuznetsova IM, Maskevich AA, Stepuro VI, Kuzmitsky VA, Uversky VN (2007) ThT as an instrument for testing and investigation of amyloid and amyloid-like fibrils. Proc SPIE 6733:1–7

    Google Scholar 

  37. Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK (2007) Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res 6(4):1392–1401

    Article  PubMed  CAS  Google Scholar 

  38. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111(22):4829–4835

    Article  PubMed  CAS  Google Scholar 

  39. Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, DeKosky ST, Mathis CA (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23(6):2086–2092

    PubMed  CAS  Google Scholar 

  40. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11 C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46(13):2740–2754

    Article  PubMed  CAS  Google Scholar 

  41. Henriksen G, Hauser AI, Westwell AD, Yousefi BH, Schwaiger M, Drzezga A, Wester HJ (2007) Metabolically stabilized benzothiazoles for imaging of amyloid plaques. J Med Chem 50(6):1087–1089

    Article  PubMed  CAS  Google Scholar 

  42. Ono M (2009) Development of positron-emission tomography/single-photon emission computed tomography imaging probes for in vivo detection of beta-amyloid plaques in Alzheimer’s brains. Chem Pharm Bull (Tokyo) 57(10):1029–1039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the “Molecular and Cell Biology” Program of the Russian Academy of Sciences (KKT and VNU); Russian Foundation of Basic Research, grants #12-04-01651 (KKT) and #12-04-90022_Bel (KKT); and Dmitry Zimin’s Russian Charitable Foundation “Dynasty” (AIS). We are extremely grateful to Alexey V. Uversky for careful reading and editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir N. Uversky or Konstantin K. Turoverov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, I.M., Sulatskaya, A.I., Uversky, V.N. et al. A New Trend in the Experimental Methodology for the Analysis of the Thioflavin T Binding to Amyloid Fibrils. Mol Neurobiol 45, 488–498 (2012). https://doi.org/10.1007/s12035-012-8272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8272-y

Keywords

Navigation