Skip to main content

Advertisement

Log in

Integrating Cytosolic Phospholipase A2 with Oxidative/Nitrosative Signaling Pathways in Neurons: A Novel Therapeutic Strategy for AD

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The pathophysiology of Alzheimer's disease (AD) is comprised of complex metabolic abnormalities in different cell types in the brain. To date, there are not yet effective drugs that can completely inhibit the pathophysiological event, and efforts have been devoted to prevent or minimize the progression of this disease. Much attention has focused on studies to understand aberrant functions of the ionotropic glutamate receptors, perturbation of calcium homeostasis, and toxic effects of oligomeric amyloid beta peptides (Aβ) which results in production of reactive oxygen and nitrogen species and signaling pathways, leading to mitochondrial dysfunction and synaptic impairments. Aberrant phospholipase A2 (PLA2) activity has been implicated to play a role in the pathogenesis of many neurodegenerative diseases, including AD. However, mechanisms for their modes of action and their roles in the oxidative and nitrosative signaling pathways have not been firmly established. In this article, we review recent studies providing a metabolic link between cytosolic PLA2 (cPLA2) and neuronal excitation due to stimulation of ionotropic glutamate receptors and toxic Aβ peptides. The requirements for Ca2+ binding together with its posttranslational modifications by protein kinases and possible by the redox-based S-nitrosylation, provide strong support for a dynamic role of cPLA2 in serving multiple functions to neurons and glial cells under abnormal physiological and pathological conditions. Therefore, understanding mechanisms for cPLA2 in the oxidative and nitrosative pathways in neurons will allow the development of novel therapeutic targets to mitigate the detrimental effects of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298:789–791

    PubMed  CAS  Google Scholar 

  2. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45(2):205–213

    PubMed  CAS  Google Scholar 

  3. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103(1):1–16

    PubMed  CAS  Google Scholar 

  4. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    PubMed  CAS  Google Scholar 

  5. Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8):1051–1058

    PubMed  CAS  Google Scholar 

  6. Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 13812–818

  7. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875

    PubMed  CAS  Google Scholar 

  8. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14:837–842

    PubMed  CAS  Google Scholar 

  9. Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47(3):264–272

    PubMed  CAS  Google Scholar 

  10. Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285:12463–12468

    PubMed  CAS  Google Scholar 

  11. Paul S, Connor JA (2010) NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling. J Neurochem 114:1107–1118

    PubMed  CAS  Google Scholar 

  12. Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ (2010) Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Medicine 12:13–26

    PubMed  CAS  Google Scholar 

  13. Pham E, Crews L, Ubhi K et al (2010) Progressive accumulation of amyloid-beta oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277:3051–3067

    PubMed  Google Scholar 

  14. Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278(13):11612–11622

    PubMed  CAS  Google Scholar 

  15. Stine WB, Jungbauer L, Yu C, LaDu MJ (2010) Preparing synthetic Aβ in different aggregation states. Methods Mol Biol 670:13–32

    Google Scholar 

  16. Wilcox KC, Lacor PN, Pitt J, Klein WL (2011) Aβ oligomer-induced synapse degeneration in Alzheimer's disease. Cell Mol Neurobiol 31(6):939–948

    PubMed  CAS  Google Scholar 

  17. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  18. Okamoto SI, Pouladi MA, Talantova M et al (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15:1407–1413

    PubMed  CAS  Google Scholar 

  19. Papadia S, Soriano FX, Leveille F et al (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    PubMed  CAS  Google Scholar 

  20. Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE (2005) Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci 25:4279–4287

    PubMed  CAS  Google Scholar 

  21. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    PubMed  CAS  Google Scholar 

  22. Abu-Soud HM, Stuehr DJ (1993) Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A 90:10769–10772

    PubMed  CAS  Google Scholar 

  23. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    PubMed  CAS  Google Scholar 

  24. Kolodziejska KE, Burns AR, Moore RH, Stenoien DL, Eissa NT (2005) Regulation of inducible nitric oxide synthase by aggresome formation. Proc Natl Acad Sci U S A 102:4854–4859

    PubMed  CAS  Google Scholar 

  25. Butterfield A, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RA, Sultana R (2011) Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal. doi:10.1089/ars.2011.4109

  26. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    PubMed  CAS  Google Scholar 

  27. Mattson MP (2009) Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 44:625–633

    PubMed  CAS  Google Scholar 

  28. Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer's disease. J Alzheimers Dis 19:341–353

    PubMed  Google Scholar 

  29. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    PubMed  CAS  Google Scholar 

  30. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106(1):45–55

    PubMed  CAS  Google Scholar 

  31. Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2481–2504

    PubMed  CAS  Google Scholar 

  32. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    PubMed  CAS  Google Scholar 

  33. Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD (2009) Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 11:2535–2552

    PubMed  CAS  Google Scholar 

  34. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

    PubMed  CAS  Google Scholar 

  35. Kahles T, Kohnen A, Heumueller S et al (2010) NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis 40:185–192

    PubMed  CAS  Google Scholar 

  36. Cristovao AC, Choi DH, Baltazar G, Beal MF, Kim YS (2009) The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal 11:2105–2118

    PubMed  CAS  Google Scholar 

  37. Ha JS, Lee JE, Lee JR, Lee CS, Maeng JS, Bae YS, Kwon KS, Park SS (2010) Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons. Exp Cell Res 316:1651–1661

    PubMed  CAS  Google Scholar 

  38. Ansari MA, Scheff SW (2011) NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med 51:171–178

    PubMed  CAS  Google Scholar 

  39. Bruce-Keller AJ, Gupta S, Parrino TE, Knight AG, Ebenezer PJ, Weidner AM, LeVine H 3rd, Keller JN, Markesbery WR (2010) NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal 12:1371–1382

    PubMed  CAS  Google Scholar 

  40. Shimohama S, Tanino H, Kawakami N et al (2000) Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun 273(1):5–9

    PubMed  CAS  Google Scholar 

  41. Yoshioka H, Niizuma K, Katsu M, Okami N, SakataH KGS, Narasimhan P, Chan PH (2011) NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 31(3):868–880

    PubMed  CAS  Google Scholar 

  42. Zekry D, Epperson TK, Krause KH (2003) A role for NOX NADPH oxidases in Alzheimer's disease and other types of dementia? IUBMB life 55(6):307–313

    PubMed  CAS  Google Scholar 

  43. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    PubMed  CAS  Google Scholar 

  44. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 88:6368–6371

    PubMed  CAS  Google Scholar 

  45. O'Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A 88:11285–11289

    PubMed  Google Scholar 

  46. Schuman EM, Madison DV (1994) Locally distributed synaptic potentiation in the hippocampus. Science 263:532–536

    PubMed  CAS  Google Scholar 

  47. Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ, Lipton SA (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087–1099

    PubMed  CAS  Google Scholar 

  48. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106(6):675–683

    PubMed  CAS  Google Scholar 

  49. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    PubMed  CAS  Google Scholar 

  50. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441(7092):513–517

    PubMed  CAS  Google Scholar 

  51. Yao D, Gu Z, Nakamura T et al (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 101(29):10810–10814

    PubMed  CAS  Google Scholar 

  52. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    PubMed  CAS  Google Scholar 

  53. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    PubMed  CAS  Google Scholar 

  54. Pagani L, Eckert A (2011) Amyloid-beta interaction with mitochondria. Int J Alzheimer's Dis 2011:925050

    Google Scholar 

  55. He Y, Cui J, Lee JC et al (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro 3:e00050

    PubMed  Google Scholar 

  56. He Y, Cui J, Lee JC et al (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro 3(1):e00050

    PubMed  Google Scholar 

  57. Ma T, Hoeffer CA, Wong H, Massaad CA, Zhou P, Iadecola C, Murphy MP, Pautler RG, Klann E (2011) Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 31:5589–5595

    PubMed  CAS  Google Scholar 

  58. Simonyi A, He Y, Sheng W, Sun AY, Wood WG, Weisman GA, Sun GY (2010) Targeting NADPH oxidase and phospholipases A2 in Alzheimer's disease. Mol Neurobiol 41(2–3):73–86

    PubMed  CAS  Google Scholar 

  59. Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K (2011) Recent progress in phospholipase A research: from cells to animals to humans. Progress in Lipid Research 50:152–192

    PubMed  CAS  Google Scholar 

  60. Xu L, Han C, Lim K, Wu T (2008) Activation of cytosolic phospholipase A2alpha through nitric oxide-induced S-nitrosylation. Involvement of inducible nitric-oxide synthase and cyclooxygenase-2. J Biol Chem 283(6):3077–3087

    PubMed  CAS  Google Scholar 

  61. Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z, Weisman GA, Sun GY (2002) Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. J Neurochem 83(2):259–270

    PubMed  CAS  Google Scholar 

  62. Bolshakov VY, Siegelbaum SA (1995) Hippocampal long-term depression: arachidonic acid as a potential retrograde messenger. Neuropharmacology 34:1581–1587

    PubMed  CAS  Google Scholar 

  63. Leu BH, Schmidt JT (2008) Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors. Dev Neurobiol 68:18–30

    PubMed  CAS  Google Scholar 

  64. Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138:2515–2520

    PubMed  CAS  Google Scholar 

  65. Okuda S, Saito H, Katsuki H (1994) Arachidonic acid: toxic and trophic effects on cultured hippocampal neurons. Neuroscience 63:691–699

    PubMed  CAS  Google Scholar 

  66. Lee JC, Simonyi A, Sun AY, Sun GY (2010) Phospholipases A2 and neural membrane dynamics: implications for Alzheimer's disease. J Neurochem 116(5):813–819

    Google Scholar 

  67. Kriem B, Sponne I, Fifre A et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J 19(1):85–87

    PubMed  CAS  Google Scholar 

  68. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 26(43):11111–11119

    PubMed  CAS  Google Scholar 

  69. Desbene C, Malaplate-Armand C, Youssef I et al (2011) Critical role of cPLA(2) in Aβ oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2011.11.008

  70. Sanford SD, Yun BG, Leslie CC, Murphy RC, Pfenninger KH (2012) Group IVA phospholipase A(2) is necessary for growth cone repulsion and collapse. J Neurochem 120(6):974–984

    PubMed  CAS  Google Scholar 

  71. Schaeffer EL, Forlenza OV, Gattaz WF (2009) Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology 202(1–3):37–51

    PubMed  CAS  Google Scholar 

  72. Sundaram JR, Chan ES, Poore CP et al (2012) Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci 32(3):1020–1034

    PubMed  CAS  Google Scholar 

  73. Szaingurten-Solodkin I, Hadad N, Levy R (2009) Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia 57(16):1727–1740

    PubMed  CAS  Google Scholar 

  74. Sanchez-Mejia RO, Newman JW, Toh S et al (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat Neurosci 11:1311–1318

    PubMed  CAS  Google Scholar 

  75. Schaeffer EL, da Silva ER, Novaes Bde A, Skaf HD, Gattaz WF (2010) Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 34(8):1381–1389

    PubMed  CAS  Google Scholar 

  76. Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  77. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta 1802:2–10

    PubMed  CAS  Google Scholar 

  78. Igarashi M, Ma K, Gao F, Kim HW, Rapoport SI, Rao JS (2010) Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex. J Alzheimers Dis 24(3):507–517

    Google Scholar 

  79. Sanchez-Mejia RO, Mucke L (2010) Phospholipase A2 and arachidonic acid in Alzheimer's disease. Biochim Biophys Acta 1801:784–790

    PubMed  CAS  Google Scholar 

  80. Thorns V, Hansen L, Masliah E (1998) nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer's disease. Exp Neurol 150(1):14–20

    PubMed  CAS  Google Scholar 

  81. Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM, Iadecola C (2009) NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 29(8):2545–2552

    PubMed  CAS  Google Scholar 

  82. Tian J, Kim SF, Hester L, Snyder SH (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci U S A 105(30):10537–10540

    PubMed  CAS  Google Scholar 

  83. Sheng W, Zong Y, Mohammad A et al (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. J Neuroinflammation 8:121

    PubMed  CAS  Google Scholar 

  84. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23:153–165

    PubMed  CAS  Google Scholar 

  85. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247

    PubMed  CAS  Google Scholar 

  86. Chalimoniuk M, Stolecka A, Cakala M et al (2007) Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells. Acta Biochimica Polonica 54:611–623

    PubMed  CAS  Google Scholar 

  87. Limon ID, Diaz A, Mendieta L, Chamorro G, Espinosa B, Zenteno E, Guevara J (2009) Amyloid-beta(25-35) impairs memory and increases NO in the temporal cortex of rats. Neurosci Res 63:129–137

    PubMed  CAS  Google Scholar 

  88. Chatterjee S, Feinstein SI, Dodia C, Sorokina E, Lien YC, Nguyen S, Debolt K, Speicher D, Fisher AB (2011) Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem 286:11696–11706

    PubMed  CAS  Google Scholar 

  89. Chenevier-Gobeaux C, Simonneau C, Therond P, Bonnefont-Rousselot D, Poiraudeau S, Ekindjian OG, Borderie D (2007) Implication of cytosolic phospholipase A2 (cPLA2) in the regulation of human synoviocyte NADPH oxidase (Nox2) activity. Life Sci 81:1050–1058

    PubMed  CAS  Google Scholar 

  90. Dana R, Malech HL, Levy R (1994) The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem J 297(Pt 1):217–223

    PubMed  CAS  Google Scholar 

  91. Henderson LM, Chappell JB, Jones OT (1989) Superoxide generation is inhibited by phospholipase A2 inhibitors. Role for phospholipase A2 in the activation of the NADPH oxidase. Biochem J 264:249–255

    PubMed  CAS  Google Scholar 

  92. Levy R, Lowenthal A, Dana R (2000) Cytosolic phospholipase A2 is required for the activation of the NADPH oxidase associated H + channel in phagocyte-like cells. Adv Exp Med Biol 479:125–135

    PubMed  CAS  Google Scholar 

  93. Shmelzer Z, Haddad N, Admon E, Pessach I, Leto TL, Eitan-Hazan Z, Hershfinkel M, Levy R (2003) Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J Cell Biol 162(4):683–692

    PubMed  CAS  Google Scholar 

  94. Bate C, Ingham V, Williams A (2011) Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons. Neuropharmacology 60:365–372

    PubMed  CAS  Google Scholar 

  95. Bate C, Tayebi M, Williams A (2010) A glycosylphosphatidylinositol analogue reduced prion-derived peptide mediated activation of cytoplasmic phospholipase A2, synapse degeneration and neuronal death. Neuropharmacology 59:93–99

    PubMed  CAS  Google Scholar 

  96. Bate C, Tayebi M, Williams A (2010) Phospholipase A2 inhibitors protect against prion and Aβ mediated synapse degeneration. Mol Neurodegener 5:13

    PubMed  Google Scholar 

  97. Forlenza OV, Mendes CT, Marie SK, Gattaz WF (2007) Inhibition of phospholipase A2 reduces neurite outgrowth and neuronal viability. Prostaglandins, Leukotrienes, and Essential Fatty Acids 76(1):47–55

    PubMed  CAS  Google Scholar 

  98. Mendes CT, Gattaz WF, Schaeffer EL, Forlenza OV (2005) Modulation of phospholipase A2 activity in primary cultures of rat cortical neurons. J Neural Transm 112:1297–1308

    PubMed  CAS  Google Scholar 

  99. Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59:606–619

    PubMed  CAS  Google Scholar 

  100. Marusic S, Thakker P, Pelker JW et al (2008) Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. J Neuroimmunol 204(1–2):29–37

    PubMed  CAS  Google Scholar 

  101. Vana AC, Li S, Ribeiro R, TchantchouF ZY (2011) Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter. Exp Neurol 231(1):45–55

    PubMed  CAS  Google Scholar 

  102. Li S, Vana AC, Ribeiro R, Zhang Y (2011) Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience 184:107–119

    PubMed  CAS  Google Scholar 

  103. Zhao X, Bey EA, Wientjes FB, Cathcart MK (2002) Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox). J Biol Chem 277(28):25385–25392

    PubMed  CAS  Google Scholar 

  104. Schaeffer EL, Gattaz WF (2008) Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology 198(1):1–27

    PubMed  CAS  Google Scholar 

  105. Schaeffer EL, De-Paula VJ, da Silva ER, de Novaes AB, Skaf HD, Forlenza OV, Gattaz WF (2011) Inhibition of phospholipase A(2) in rat brain decreases the levels of total Tau protein. J Neural Transm 118(9):1273–1279

    PubMed  CAS  Google Scholar 

  106. Schaeffer EL, Skaf HD, Novaes Bde A, da Silva ER, Martins BA, Joaquim HD, Gattaz WF (2011) Inhibition of phospholipase A2 in rat brain modifies different membrane fluidity parameters in opposite ways. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1612–1617

    PubMed  CAS  Google Scholar 

  107. Askarova S, Yang X, Sheng W, Sun GY, Lee JC (2011) Role of Aβ-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A2 activation in astrocytes and cerebral endothelial cells. Neuroscience 199:375–385

    PubMed  CAS  Google Scholar 

  108. Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31(1–3):135–147

    PubMed  CAS  Google Scholar 

  109. Sun AY, Wang Q, Simonyi A, Sun GY (2008) Botanical phenolics and brain health. Neuromolecular Med 10(4):259–274

    PubMed  CAS  Google Scholar 

  110. Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41(2–3):375–383

    PubMed  CAS  Google Scholar 

  111. Simonyi A, Serfozo P, Lehmidi TM, Cui J, Gu Z, Lubahn DB, Sun AY, Sun GY (2012) The neuroprotective effects of apocynin. Front Biosci 4:2183–2193

    Google Scholar 

  112. Wang Q, Simonyi A, Li W, Sisk BA, Miller RL, Macdonald RS, Lubahn DE, Sun GY, Sun AY (2005) Dietary grape supplement ameliorates cerebral ischemia-induced neuronal death in gerbils. Mol Nutr Food Res 49(5):443–451

    PubMed  CAS  Google Scholar 

  113. Wang Q, Sun AY, Simonyi A et al (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82(1):138–148

    PubMed  CAS  Google Scholar 

  114. Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090(1):182–189

    PubMed  CAS  Google Scholar 

  115. Begum AN, Jones MR, Lim GP et al (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J Pharmacol Exp Ther 326:196–208

    PubMed  CAS  Google Scholar 

  116. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212

    PubMed  Google Scholar 

  117. Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer's disease. Mol Neurobiol 41:392–409

    PubMed  CAS  Google Scholar 

  118. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer's disease. Current Alzheimer Research 2:131–136

    PubMed  CAS  Google Scholar 

  119. Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120:461–472

    PubMed  CAS  Google Scholar 

  120. Zhao Z, Liu N, Huang J, Lu PH, Xu XM (2011) Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress-induced cell death. J Neurochem 116(6):1057–1065

    PubMed  CAS  Google Scholar 

  121. Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea—a review. J Am Coll Nutr 25:79–99

    PubMed  CAS  Google Scholar 

  122. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    PubMed  CAS  Google Scholar 

  123. Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem 15(9):506–516

    PubMed  CAS  Google Scholar 

  124. Dragicevic N, Smith A, Lin X et al (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26(3):507–521

    PubMed  CAS  Google Scholar 

  125. Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT (2009) Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 139:1987–1993

    PubMed  CAS  Google Scholar 

  126. Obregon DF, Rezai-Zadeh K, Bai Y et al (2006) ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 281:16419–16427

    PubMed  CAS  Google Scholar 

  127. Rezai-Zadeh K, Shytle D, Sun N et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38):8807–8814

    PubMed  CAS  Google Scholar 

  128. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int J Pharm 389(1–2):207–212

    PubMed  CAS  Google Scholar 

  129. Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Li Y (2009) Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience 163:741–749

    PubMed  CAS  Google Scholar 

  130. Choi DY, Lee YJ, Hong JT, Lee HJ (2011) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease. Brain Res Bull 87(2–3):144–153

    PubMed  Google Scholar 

  131. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614

    PubMed  CAS  Google Scholar 

  132. Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 19:1329–1333

    PubMed  CAS  Google Scholar 

  133. Kim CY, Lee C, Park GH, Jang JH (2009) Neuroprotective effect of epigallocatechin-3-gallate against beta-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Arch Pharm Res 32:869–881

    PubMed  CAS  Google Scholar 

  134. Nishikawa H, Wakano K, Kitani S (2007) Inhibition of NADPH oxidase subunits translocation by tea catechin EGCG in mast cell. Biochem Biophys Res Commun 362:504–509

    PubMed  CAS  Google Scholar 

  135. Steffen Y, Gruber C, Schewe T, Sies H (2008) Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469(2):209–219

    PubMed  CAS  Google Scholar 

  136. Lee YK, Yuk DY, Lee JW, Lee SY, Ha TY, Oh KW, Yun YP, Hong JT (2009) (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res 1250:164–174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants P02 AG018357 NIA and 1P50 AT006273 from NCCAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G.Y., He, Y., Chuang, D.Y. et al. Integrating Cytosolic Phospholipase A2 with Oxidative/Nitrosative Signaling Pathways in Neurons: A Novel Therapeutic Strategy for AD. Mol Neurobiol 46, 85–95 (2012). https://doi.org/10.1007/s12035-012-8261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8261-1

Keywords

Navigation