Skip to main content
Log in

Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burgoyne RD, O'Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV (2004) Neuronal Ca2 + -sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 27(4):203–209

    Article  PubMed  CAS  Google Scholar 

  2. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8(3):182–193

    Article  PubMed  CAS  Google Scholar 

  3. Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1(4):234–241

    Article  PubMed  CAS  Google Scholar 

  4. Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P (2001) Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30(1):241–248

    Article  PubMed  CAS  Google Scholar 

  5. Dason JS, Romero-Pozuelo J, Marin L, Iyengar BG, Klose MK, Ferrús A, Atwood HL (2009) Frequenin/NCS-1 and the Ca2+ channel α1-subunit co-regulate synaptic transmission and nerve terminal growth. J Cell Sci 122(22):4109–4121

    Article  PubMed  CAS  Google Scholar 

  6. Nakamura TY, Jeromin A, Mikoshiba K, Wakabayashi S (2011) Neuronal calcium sensor-1 promotes immature heart function and hypertrophy by enhancing Ca2+ signals. Circ Res 109(5):512–523

    Article  PubMed  CAS  Google Scholar 

  7. Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas A, Ferrus A (1993) Frequenin—a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11(1):15–28

    Article  PubMed  CAS  Google Scholar 

  8. Romero-Pozuelo J, Dason JS, Atwood HL, Ferrús A (2007) Chronic and acute alterations in the functional levels of frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology. Eur J Neurosci 26(9):2428–2443

    Article  PubMed  Google Scholar 

  9. Hui K, Fei GH, Saab BJ, Su J, Roder JC, Feng ZP (2007) Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth. Development 134(24):4479–4489

    Article  PubMed  CAS  Google Scholar 

  10. Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, Collingridge GL, Cho K (2008) Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron 60(6):1095–1111

    Article  PubMed  CAS  Google Scholar 

  11. Saab BJ, Georgiou J, Nath A, Lee FJS, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC (2009) NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron 63(5):643–656

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, Wakabayashi S, Nabekura J (2007) Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J Cell Biol 172(7):1081–1091

    Article  CAS  Google Scholar 

  13. Yip PK, Wong LF, Sears TA, Yáñez-Muñoz RJ, McMahon SB (2010) Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol 8(6):e1000399

    Article  PubMed  CAS  Google Scholar 

  14. Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2 + -binding proteins. Biochem J 353(1):1–12

    Article  PubMed  CAS  Google Scholar 

  15. Braunewell KH (2005) The darker side of Ca2+ signaling by neuronal Ca2 + -sensor proteins: from Alzheimer's disease to cancer. Trends Pharmacol Sci 26(7):345–351

    Article  PubMed  CAS  Google Scholar 

  16. McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2(8):a004085

    Article  PubMed  CAS  Google Scholar 

  17. Mikhaylova M, Hradsky J, Kreutz MR (2011) Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca(2+) signalling. J Neurochem 118(5):695–713

    Article  PubMed  CAS  Google Scholar 

  18. Ames JB, Lim S (2011) Molecular structure and target recognition of neuronal calcium sensor proteins. Biochim Biophys Acta, in press

  19. Burgoyne RD, Haynes LP (2012) Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 5(1):2

    Article  PubMed  CAS  Google Scholar 

  20. Weiss JL, Hui H, Burgoyne RD (2010) Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 30(8):1283–1292

    Article  PubMed  CAS  Google Scholar 

  21. Tanouye MA, Ferrus A, Fujita SC (1981) Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci USA 78(10):6548–6552

    Article  PubMed  CAS  Google Scholar 

  22. Nef S, Fiumelli H, de Castro E, Raes MB, Nef P (1995) Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J Recept Signal Transduct Res 15(1–4):365–378

    PubMed  CAS  Google Scholar 

  23. Blasiole B, Kabbani N, Boehmler W, Thisse B, Thisse C, Canfield V, Levenson R (2005) Neuronal calcium sensor-1 gene ncs-1a is essential for semicircular canal formation in zebrafish inner ear. J Neurobiol 64(3):285–297

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez-Gracia A, Romero-Pozuelo J, Ferrús A (2010) Two frequenins in Drosophila: unveiling the evolutionary history of an unusual neuronal calcium sensor (NCS) duplication. BMC Evol Biol 10:54

    Article  PubMed  CAS  Google Scholar 

  25. Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 276(15):11949–11955

    Article  PubMed  CAS  Google Scholar 

  26. Cox JA, Durussel I, Comte M, Nef S, Nef P, Lenz SE, Gundelfinger ED (1994) Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. J Biol Chem 269(52):32807–32813

    PubMed  CAS  Google Scholar 

  27. Jeromin A, Muralidhar D, Parameswaran MN, Roder J, Fairwell T, Scarlata S, Dowal L, Mustafi SM, Chary KV, Sharma Y (2004) N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1. J Biol Chem 279(26):27158–27167

    Article  PubMed  CAS  Google Scholar 

  28. Sippy T, Cruz-Martin A, Jeromin A, Schweizwer FE (2003) Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 6(10):1031–1038

    Article  PubMed  CAS  Google Scholar 

  29. de Barry J, Janoshazi A, Dupont JL, Procksch O, Chasserot-Golaz S, Jeromin A, Vitale N (2006) Functional implication of neuronal calcium sensor-1 and phosphoinositol 4-kinase-beta interaction in regulated exocytosis of PC12 cells. J Biol Chem 281(26):18098–18111

    Article  PubMed  CAS  Google Scholar 

  30. O'Callaghan DW, Burgoyne RD (2003) Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem Soc Trans 31(5):963–965

    Article  PubMed  Google Scholar 

  31. Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995) Sequestration of the membrane targeting myristoyl group of recoverin in the calcium-free state. Nature 376:444–447

    Article  PubMed  CAS  Google Scholar 

  32. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium–myristoyl switches. Nature 389:198–202

    Article  PubMed  CAS  Google Scholar 

  33. Meyer T, York JD (1999) Calcium–myristoyl switches turn on new lights. Nat Cell Biol 1(4):E93–E95

    Article  PubMed  CAS  Google Scholar 

  34. McFerran BW, Weiss JL, Burgoyne RD (1999) Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J Biol Chem 274(42):30258–30265

    Article  PubMed  CAS  Google Scholar 

  35. O'Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 277(16):14227–14237

    Article  PubMed  CAS  Google Scholar 

  36. Koizumi S, Rosa P, Willars GB, Challiss RA, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A (2002) Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 277(33):30315–30324

    Article  PubMed  CAS  Google Scholar 

  37. Handley MT, Lian LY, Haynes LP, Burgoyne RD (2010) Structural and functional deficits in a neuronal calcium sensor-1 mutant identified in a case of autistic spectrum disorder. PLoS One 5(5):e10534

    Article  PubMed  CAS  Google Scholar 

  38. Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T (2002) Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295(5563):2276–2279

    Article  PubMed  CAS  Google Scholar 

  39. Hui K, Feng ZP (2008) NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons. Eur J Neurosci 27(3):631–643

    Article  PubMed  Google Scholar 

  40. Saab BJ (2010). The synaptic role of neuronal calcium sensor 1 in dentate gyrus plasticity, curiosity and spatial memory. PhD thesis, University of Toronto.

  41. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22(19):8476–8486

    PubMed  CAS  Google Scholar 

  42. Lian L-Y, Pandalaneni SR, Patel P, McCue HV, Haynes LP, Burgoyne RD (2011) Characterisation of the interaction of the C-terminus of the dopamine D2 receptor with neuronal calcium sensor-1. PLoS One 6(11):e27779

    Article  PubMed  CAS  Google Scholar 

  43. Zheng Q, Bobich JA, Vidugiriene J, McFadden SC, Thomas F, Roder J, Jeromin A (2005) Neuronal calcium sensor-1 facilitates neuronal exocytosis through phosphatidylinositol 4-kinase. J Neurochem 92(3):442–451

    Article  PubMed  CAS  Google Scholar 

  44. Martone ME, Edelmann VM, Ellisman MH, Nef P (1999) Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res 295(3):395–407

    Article  PubMed  CAS  Google Scholar 

  45. Jinno S, Jeromin A, Roder J, Kosaka T (2002) Immunocytochemical localization of neuronal calcium sensor-1 in the hippocampus and cerebellum of the mouse, with special reference to presynaptic terminals. Neuroscience 113(2):449–461

    Article  PubMed  CAS  Google Scholar 

  46. Chen C, Yu L, Zhang P, Jiang J, Zhang Y, Chen X, Wu Q, Wu Q, Zhao S (2002) Human neuronal calcium sensor-1 shows the highest expression level in cerebral cortex. Neurosci Lett 319(2):67–70

    Article  PubMed  CAS  Google Scholar 

  47. Olafsson P, Soares HD, Herzog KH, Wang T, Morgan JI, Lu B (1997) The Ca2+ binding protein, frequenin is a nervous system-specific protein in mouse preferentially localized in neurites. Brain Res Mol Brain Res 44(1):73–82

    Article  PubMed  CAS  Google Scholar 

  48. Jeromin A, Shayan AJ, Msghina M, Roder J, Atwood HL (1999) Crustacean frequenins: molecular cloning and differential localization at neuromuscular junctions. J Neurobiol 41(2):165–175

    Article  PubMed  CAS  Google Scholar 

  49. Werle MJ, Roder J, Jeromin A (2000) Expression of frequenin at the frog (Rana) neuromuscular junction, muscle spindle and nerve. Neurosci Lett 284(1–2):33–36

    Article  PubMed  CAS  Google Scholar 

  50. Garcia N, Lanuza MA, Besalduch N, Santafe MM, Jeromin A, Tomas J (2005) Localization of neuronal calcium sensor-1 at the adult and developing rat neuromuscular junction. J Neurosci Res 82(1):1–9

    Article  PubMed  CAS  Google Scholar 

  51. Gierke P, Zhao C, Brackmann M, Linke B, Heinemann U, Braunewell KH (2004) Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and western blot analysis. Biochem Biophys Res Commun 323(1):38–43

    Article  PubMed  CAS  Google Scholar 

  52. Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM (2002) Modulation of Kv4-encoded K(+) currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem 277(29):26436–26443

    Article  PubMed  CAS  Google Scholar 

  53. Nakamura TY, Sturm E, Pountney DJ, Orenzoff B, Artman M, Coetzee WA (2003) Developmental expression of NCS-1 (frequenin), a regulator of Kv4 K + channels, in mouse heart. Pediatr Res 53(4):554–557

    Article  PubMed  CAS  Google Scholar 

  54. Bélair EL, Vallée J, Robitaille R (2005) Long-term in vivo modulation of synaptic efficacy at the neuromuscular junction of Rana pipiens frogs. J Physiol 569(1):163–178

    Article  PubMed  CAS  Google Scholar 

  55. Hermainski J, Stockebrand M, Pongs O (2009). Synaptic plasticity in NCS-1 knock-out and NCS-1-EGFP overexpressing mice. 2nd European Calcium Society Workshop 2009 Annexins, targets and calcium-binding proteins in pathology June 3–6, 2009, Smolenice, Slovakia

  56. Olafsson P, Wang T, Lu B (1995) Molecular cloning and functional characterization of the Xenopus Ca2+-binding protein frequenin. Proc Natl Acad Sci USA 92(17):8001–8005

    Article  PubMed  CAS  Google Scholar 

  57. Wang CY, Yang F, He X, Chow A, Du J, Russell JT, Lu B (2001) Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron 32(1):99–112

    Article  PubMed  Google Scholar 

  58. Mallart A, Angaut-Petit D, Bourret-Poulain C, Ferrus A (1991) Nerve terminal excitability and neuromuscular transmission in T(X;Y)V7 and Shaker mutants of Drosophila melanogaster. J Neurogenet 7(2–3):75–84

    Article  PubMed  CAS  Google Scholar 

  59. Rivosecchi R, Pongs O, Theil T, Mallart A (1994) Implication of frequenin in the facilitation of transmitter release in Drosophila. J Physiol 474(2):223–232

    PubMed  CAS  Google Scholar 

  60. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

  61. Stewart BA, Atwood HL, Renger JJ, Wang J, Wu CF (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Comp Physiol [A] 175(2):179–191

    Article  CAS  Google Scholar 

  62. Atwood HL, Govind CK, Wu CF (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J Neurobiol 24(8):1008–1024

    Article  PubMed  CAS  Google Scholar 

  63. Kurdyak P, Atwood HL, Stewart BA, Wu CF (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. J Comp Neurol 350(3):463–472

    Article  PubMed  CAS  Google Scholar 

  64. Angaut-Petit D, Toth P, Rogero O, Faille L, Tejedor FJ, Ferrús A (1998) Enhanced neurotransmitter release is associated with reduction of neuronal branching in a Drosophila mutant overexpressing frequenin. Eur J Neurosci 10(2):423–434

    Article  PubMed  CAS  Google Scholar 

  65. McFerran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273(35):22768–22772

    Article  PubMed  CAS  Google Scholar 

  66. Weiss JL, Archer DA, Burgoyne RD (2000) Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275(51):40082–40087

    Article  PubMed  CAS  Google Scholar 

  67. Weiss JL, Burgoyne RD (2001) Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem 276(48):44804–44811

    Article  PubMed  CAS  Google Scholar 

  68. Rousset M, Cens T, Gavarini S, Jeromin A, Charnet P (2003) Down-regulation of voltage-gated Ca2+ channels by neuronal calcium sensor-1 is beta subunit-specific. J Biol Chem 278(9):7019–7026

    Article  PubMed  CAS  Google Scholar 

  69. Ishikawa T, Kaneko M, Shin HS, Takahashi T (2005) Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol 568(Pt 1):199–209

    Article  PubMed  CAS  Google Scholar 

  70. Macleod GT, Chen L, Karunanithi S, Peloquin JB, Atwood HL, McRory JE, Zamponi GW, Charlton MP (2006) The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation. Eur J Neurosci 23(12):3230–3244

    Article  PubMed  CAS  Google Scholar 

  71. Lautermilch NJ, Few AP, Scheuer T, Catterall WA (2005) Modulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J Neurosci 25(30):7062–7070

    Article  PubMed  CAS  Google Scholar 

  72. Bahi N, Friocourt G, Carrié A, Graham ME, Weiss JL, Chafey P, Fauchereau F, Burgoyne RD, Chelly J (2003) IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with neuronal calcium sensor-1 and regulates exocytosis. Hum Mol Genet 12(12):1415–1425

    Article  PubMed  CAS  Google Scholar 

  73. Gambino F, Pavlowsky A, Béglé A, Dupont JL, Bahi N, Courjaret R, Gardette R, Hadjkacem H, Skala H, Poulain B, Chelly J, Vitale N, Humeau Y (2007) IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2 + -channel and neurite elongation. Proc Natl Acad Sci USA 104(21):9063–9068

    Article  PubMed  CAS  Google Scholar 

  74. Strahl T, Grafelmann B, Dannenberg J, Thorner J, Pongs O (2003) Conservation of regulatory function in calcium-binding proteins: human frequenin (neuronal calcium sensor-1) associates productively with yeast phosphatidylinositol 4-kinase isoform, Pik1. J Biol Chem 278(49):49589–49599

    Article  PubMed  CAS  Google Scholar 

  75. Huttner IG, Strahl T, Osawa M, King DS, Ames JB, Thorner J (2003) Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1. J Biol Chem 278(7):4862–4874

    Article  PubMed  CAS  Google Scholar 

  76. Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB (2007) Structural insights into activation of phosphatidylinositol 4-kinase (pik1) by yeast frequenin (Frq1). J Biol Chem 282(42):30949–30959

    Article  PubMed  CAS  Google Scholar 

  77. Lim S, Strahl T, Thorner J, Ames JB (2011) Structure of a Ca2+–myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. J Biol Chem 286(14):12565–12577

    Article  PubMed  CAS  Google Scholar 

  78. Zhao X, Várnai P, Tuymetova G, Balla A, Tóth ZE, Oker-Blom C, Roder J, Jeromin A, Balla T (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 276(43):40183–40189

    Article  PubMed  CAS  Google Scholar 

  79. Pan CY, Jeromin A, Lundstrom K, Yoo SH, Roder J, Fox AP (2002) Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J Neurosci 22(7):2427–2433

    PubMed  CAS  Google Scholar 

  80. Taverna E, Francolini M, Jeromin A, Hilfiker S, Roder J, Rosa P (2002) Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J Cell Sci 115(20):3909–3922

    Article  PubMed  CAS  Google Scholar 

  81. Bartlett SE, Reynolds AJ, Weible M, Jeromin A, Roder J, Hendry IA (2000) PtdIns 4-kinasebeta and neuronal calcium sensor-1 co-localize but may not directly associate in mammalian neurons. J Neurosci Res 62(2):216–224

    Article  PubMed  CAS  Google Scholar 

  82. Scalettar BA, Rosa P, Taverna E, Francolini M, Tsuboi T, Terakawa S, Koizumi S, Roder J, Jeromin A (2002) Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J Cell Sci 115(11):2399–2412

    PubMed  CAS  Google Scholar 

  83. Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S (2003) Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol Chem 278(8):6075–6084

    Article  PubMed  CAS  Google Scholar 

  84. Haynes LP, Thomas GM, Burgoyne RD (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280(7):6047–6054

    Article  PubMed  CAS  Google Scholar 

  85. Haynes LP, Sherwood MW, Dolman NJ, Burgoyne RD (2007) Specificity, promiscuity and localization of ARF protein interactions with NCS-1 and phosphatidylinositol-4 kinase-III beta. Traffic 8(8):1080–1092

    Article  PubMed  CAS  Google Scholar 

  86. Gromada J, Bark C, Smidt K, Efanov AM, Janson J, Mandic SA, Webb DL, Zhang W, Meister B, Jeromin A, Berggren PO (2005) Neuronal calcium sensor-1 potentiates glucose-dependent exocytosis in pancreatic beta cells through activation of phosphatidylinositol 4-kinase beta. Proc Natl Acad Sci USA 102(29):10303–10308

    Article  PubMed  CAS  Google Scholar 

  87. Haynes LP, Fitzgerald DJ, Wareing B, O'Callaghan DW, Morgan A, Burgoyne RD (2006) Analysis of the interacting partners of the neuronal calcium-binding proteins L-CaBP1, hippocalcin, NCS-1 and neurocalcin delta. Proteomics 6(6):1822–1832

    Article  PubMed  CAS  Google Scholar 

  88. Loyet KM, Kowalchyk JA, Chaudhary A, Chen J, Prestwich GD, Martin TF (1998) Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J Biol Chem 273(14):8337–8343

    Article  PubMed  CAS  Google Scholar 

  89. Fujita Y, Xu A, Xie L, Arunachalam L, Chou TC, Jiang T, Chiew SK, Kourtesis J, Wang L, Gaisano HY, Sugita S (2007) Ca2 + -dependent activator protein for secretion 1 is critical for constitutive and regulated exocytosis but not for loading of transmitters into dense core vesicles. J Biol Chem 282(29):21392–21403

    Article  PubMed  CAS  Google Scholar 

  90. Jockusch WJ, Speidel D, Sigler A, Sørensen JB, Varoqueaux F, Rhee JS, Brose N (2007) CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131(4):796–808

    Article  PubMed  CAS  Google Scholar 

  91. Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA (2001) A role for frequenin, a Ca2 + -binding protein, as a regulator of Kv4 K + -currents. Proc Natl Acad Sci USA 98(22):12808–12813

    Article  PubMed  CAS  Google Scholar 

  92. Zhang Y, MacLean JN, An WF, Lanning CC, Harris-Warrick RM (2003) KChIP1 and frequenin modify shal-evoked potassium currents in pyloric neurons in the lobster stomatogastric ganglion. J Neurophysiol 89(4):1902–1909

    Article  PubMed  CAS  Google Scholar 

  93. Poulain C, Ferrús A, Mallart A (1994) Modulation of type A K+ current in Drosophila larval muscle by internal Ca2+; effects of the overexpression of frequenin. Pflugers Arch 427(1–2):71–79

    Article  PubMed  CAS  Google Scholar 

  94. Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572(1):165–172

    PubMed  CAS  Google Scholar 

  95. Hannan MA, Kabbani N, Paspalas CD, Levenson R (2008) Interaction with dopamine D2 receptor enhances expression of transient receptor potential channel 1 at the cell surface. Biochim Biophys Acta 1778(4):974–982

    Article  PubMed  CAS  Google Scholar 

  96. Fik-Rymarkiewicz E, Duda T, Sharma RK (2006) Novel frequenin-modulated Ca2 + -signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Mol Cell Biochem 291(1–2):187–204

    Article  PubMed  CAS  Google Scholar 

  97. Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, Ellisman MH, Sikkink R, Rusnak F, Sygush J, Nef P (1996) Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Natl Acad Sci USA 93(17):9253–9258

    Article  PubMed  CAS  Google Scholar 

  98. Souza BR, Torres KC, Miranda DM, Motta BS, Caetano FS, Rosa DV, Souza RP, Giovani A Jr, Carneiro DS, Guimarães MM, Martins-Silva C, Reis HJ, Gomez MV, Jeromin A, Romano-Silva MA. (2010). Downregulation of the cAMP/PKA pathway in PC12 cells overexpressing NCS-1. Cell Mol Neurobiol. Sep 14. [Epub ahead of print]

  99. Fitzgerald DJ, Burgoyne RD, Haynes LP (2008) Neuronal calcium sensor proteins are unable to modulate NFAT activation in mammalian cells. Biochim Biophys Acta 1780(2):240–248

    Article  PubMed  CAS  Google Scholar 

  100. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 302(5651):1727–1736

    Article  PubMed  CAS  Google Scholar 

  101. Genin A, Davis S, Meziane H, Doyere V, Jeromin A, Roder J, Mallet J, Laroche S (2001) Regulated expression of the neuronal calcium sensor-1 gene during long-term potentiation in the dentate gyrus in vivo. Neuroscience 106(3):571–577

    Article  PubMed  CAS  Google Scholar 

  102. Brackmann M, Zhao C, Kuhl D, Manahan-Vaughan D, Braunewell KH (2004) MGluRs regulate the expression of neuronal calcium sensor proteins NCS-1 and VILIP-1 and the immediate early gene arg3.1/arc in the hippocampus in vivo. Biochem Biophys Res Commun 322(3):1073–1079

    Article  PubMed  CAS  Google Scholar 

  103. Palmer CL, Lim W, Hastie PG, Toward M, Korolchuk VI, Burbidge SA, Banting G, Collingridge GL, Isaac JT, Henley JM (2005) Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 47(4):487–494

    Article  PubMed  CAS  Google Scholar 

  104. Angaut-Petit D, Ferrús A, Faille L (1993) Plasticity of motor nerve terminals in Drosophila T (X, Y)V7 mutant: effect of deregulation of the novel calcium-binding protein frequenin. Neurosci Lett 153(2):227–231

    Article  PubMed  CAS  Google Scholar 

  105. Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, Roder J, Higashida H, Jeromin A (2001) Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol 532(3):649–659

    Article  PubMed  CAS  Google Scholar 

  106. Reynolds AJ, Bartlett SE, Morgans C (2001) The distribution of neuronal calcium sensor-1 protein in the developing and adult rat retina. Neuroreport 12(4):725–728

    Article  PubMed  CAS  Google Scholar 

  107. Bergmann M, Grabs D, Roder J, Rager G, Jeromin A (2002) Differential expression of neuronal calcium sensor-1 in the developing chick retina. J Comp Neurol 449(3):231–240

    Article  PubMed  CAS  Google Scholar 

  108. Treloar HB, Uboha U, Jeromin A, Greer CA (2005) Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol 482(2):201–216

    Article  PubMed  CAS  Google Scholar 

  109. Kawasaki T, Nishio T, Kurosawa H, Roder J, Jeromin A (2003) Spatiotemporal distribution of neuronal calcium sensor-1 in the developing rat spinal cord. J Comp Neurol 460(4):465–475

    Article  PubMed  Google Scholar 

  110. Eaton BA, Fetter RD, Davis GW (2002) Dynactin is necessary for synapse stabilization. Neuron 34(5):729–741

    Article  PubMed  CAS  Google Scholar 

  111. Letinsky MS, Fischbeck KH, McMahan UJ (1976) Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol 5(6):691–718

    Article  PubMed  CAS  Google Scholar 

  112. Wernig A, Pécot-Dechavassine M, Stover H (1980) Sprouting and regression of the nerve at the frog neuromuscular junction in normal conditions and after prolonged paralysis with curare. J Neurocytol 9(3):278–303

    Article  PubMed  CAS  Google Scholar 

  113. Dason JS (2009). Role of frequenin1 and frequenin2 in regulating neurotransmitter release and nerve terminal growth at the Drosophila neuromuscular junction. PhD thesis, University of Toronto.

  114. Iketani M, Imaizumi C, Nakamura F, Jeromin A, Mikoshiba K, Goshima Y, Takei K (2009) Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones. Neuroscience 161(3):743–752

    Article  PubMed  CAS  Google Scholar 

  115. Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci USA 100(1):313–317

    Article  PubMed  CAS  Google Scholar 

  116. Bai J, He F, Novikova SI, Undie AS, Dracheva S, Haroutunian V, Lidow MS (2004) Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol Psychiatry 56(6):427–440

    Article  PubMed  CAS  Google Scholar 

  117. Negyessy L, Goldman-Rakic PS (2007) Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J Comp Neurol 488(4):464–475

    Article  CAS  Google Scholar 

  118. Piton A, Michaud JL, Peng H, Aradhya S, Gauthier J, Mottron L, Champagne N, Lafrenière RG, Hamdan FF, S2D team, Joober R, Fombonne E, Marineau C, Cossette P, Dubé MP, Haghighi P, Drapeau P, Barker PA, Carbonetto S, Rouleau GA (2008) Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum Mol Genet 17(24):3965–3974

    Article  PubMed  CAS  Google Scholar 

  119. Tessier CR, Broadie K (2011) The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 41(1):147–159

    Article  PubMed  CAS  Google Scholar 

  120. Muralidhar D, Kunjachen Jobby M, Jeromin A, Roder J, Thomas F, Sharma Y (2004) Calcium and chlorpromazine binding to the EF-hand peptides of neuronal calcium sensor-1. Peptides 25(6):909–917

    Article  PubMed  CAS  Google Scholar 

  121. Souza BR, Motta BS, Rosa DV, Torres KC, Castro AA, Comim CM, Sampaio AM, Lima FF, Jeromin A, Quevedo J, Romano-Silva MA (2008) DARPP-32 and NCS-1 expression is not altered in brains of rats treated with typical or atypical antipsychotics. Neurochem Res 33(3):533–538

    Article  PubMed  CAS  Google Scholar 

  122. Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ, Ehrlich BE (2006) Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci USA 103(48):18356–18361

    Article  PubMed  CAS  Google Scholar 

  123. Boehmerle W, Zhang K, Sivula M, Heidrich FM, Lee Y, Jordt SE, Ehrlich BE (2007) Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation. Proc Natl Acad Sci USA 104(26):11103–11108

    Article  PubMed  CAS  Google Scholar 

  124. Blachford C, Celić A, Petri ET, Ehrlich BE (2009) Discrete proteolysis of neuronal calcium sensor-1 (NCS-1) by mu-calpain disrupts calcium binding. Cell Calcium 46(4):257–262

    Article  PubMed  CAS  Google Scholar 

  125. Benbow JH, Degray B, Ehrlich BE. (2011). Protection of neuronal calcium sensor 1 in cells treated with Taxol. J Biol Chem. 2011 Aug 1.

Download references

Acknowledgements

This work was supported by grants from CIHR, Canada MOP-37774 (H.L.A.) and MEC, Spain BFU2006-10180, and MYORES European Network CE: 511978 (A.F.). We would like to thank Dr. Milton Charlton for his help and advice on past and ongoing research projects related to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Dason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dason, J.S., Romero-Pozuelo, J., Atwood, H.L. et al. Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development. Mol Neurobiol 45, 388–402 (2012). https://doi.org/10.1007/s12035-012-8250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8250-4

Keywords

Navigation