Neuroprotection by Spice-Derived Nutraceuticals: You Are What You Eat!

Abstract

Numerous lines of evidence indicate that chronic inflammation plays a major role in the development of various neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, brain tumor, and meningitis. Why these diseases are more common among people from some countries than others is not fully understood, but lifestyle factors have been linked to the development of neurodegenerative diseases. For example, the incidence of certain neurodegenerative diseases among people living in the Asian subcontinent, where people regularly consume spices, is much lower than in countries of the western world. Extensive research over the last 10 years has indicated that nutraceuticals derived from such spices as turmeric, red pepper, black pepper, licorice, clove, ginger, garlic, coriander, and cinnamon target inflammatory pathways, thereby may prevent neurodegenerative diseases. How these nutraceuticals modulate various pathways and how they exert neuroprotection are the focus of this review.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

6-OHDA:

6-Hydroxydopamine

Abeta:

Amyloid beta peptide

AD:

Alzheimer’s disease

AGE:

Aged garlic extract

BDNF:

Brain-derived neurotrophic factor

CCR5:

Chemokine receptor type 5

DADS:

Di-Allyl-disulfide

Egr-1:

Early growth response-1

ERK:

Extracellular signal-regulated kinases

fAbeta:

Beta-amyloid fibrils

FS:

Folliculostellate

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP1:

Monocyte chemotactic protein 1

MIP-1β:

Macrophage inflammatory protein-1 β

MPP:

1-Methyl-4-phenylpyridnium ion

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NF-κB:

Nuclear factor kappa-B

NTR:

Neurotrophin receptor

PD:

Parkinson’s disease

PrP:

Prion protein

PrP-res:

Protease-resistant prion protein

PTCH1:

Protein patched homolog 1

ROS:

Reactive oxygen species

SAC:

S-Allyl-cysteine

Shh:

Sonic Hedgehog

TLR:

Toll-like receptor

TRAIL:

TNF-related apoptosis-inducing ligand

TSE:

Transmissible spongiform encephalopathies

VEGF:

Vascular endothelial growth factor

References

  1. 1.

    Anonymus (2010) The market outlook for neurodegenerative diseases: epidemiology, market size, current treatments and future innovation. [Report] Available from: http://store.business-insights.com/Product/the_market_outlook_for_neurodegenerative_diseases?productid=BI00022-077

  2. 2.

    Mark C (2010) Neurodegenerative diseases: next-generation drugs for four major disorders. [Report] Available from: http://www.insightpharmareports.com/reports_report.aspx?id=86304&r=668

  3. 3.

    Marchetti B, Abbracchio MP (2005) To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 26:517–525

    PubMed  CAS  Google Scholar 

  4. 4.

    Amor S et al (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    PubMed  CAS  Google Scholar 

  5. 5.

    Galimberti D et al (2008) Inflammation in neurodegenerative disorders: friend or foe? Curr Aging Sci 1:30–41

    PubMed  CAS  Google Scholar 

  6. 6.

    Kunnumakkara AB et al (2009) Traditional uses of spices: an overview. In: Aggarwal BB, Kunnumakkara AB (eds) Molecular targets and therapeutic uses of spices. World Scientific, New Jersey, pp 1–24

    Google Scholar 

  7. 7.

    Aggarwal BB et al (2009) Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med Maywood 234:825–849

    PubMed  CAS  Google Scholar 

  8. 8.

    Aggarwal BB et al (2008) Potential of spice-derived phytochemicals for cancer prevention. Planta Med 74:1560–1569

    PubMed  CAS  Google Scholar 

  9. 9.

    Gupta SC et al. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434

  10. 10.

    Ono K et al (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    PubMed  CAS  Google Scholar 

  11. 11.

    Kuner P et al (1998) Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells. J Neurosci Res 54:798–804

    PubMed  CAS  Google Scholar 

  12. 12.

    Giri RK et al (2003) Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. J Immunol 170:5281–5294

    PubMed  CAS  Google Scholar 

  13. 13.

    Defossez A et al (1986) Immunohistochemical study of the basic lesions of Alzheimer’s disease. Encephale 12:161–168

    PubMed  CAS  Google Scholar 

  14. 14.

    Wilcock DM et al (2006) Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat Protoc 1:1591–1595

    PubMed  CAS  Google Scholar 

  15. 15.

    Thakur MK (2000) Alzheimer’s disease—a challenge in the new millennium. Curr Sci 79:29–36

    CAS  Google Scholar 

  16. 16.

    Berg L et al (1993) Neuropathological indexes of Alzheimer’s disease in demented and nondemented persons aged 80 years and older. Arch Neurol 50:349–358

    PubMed  CAS  Google Scholar 

  17. 17.

    Mattson MP, Rydel RE (1996) Alzheimer’s disease. Amyloid ox-tox transducers. Nature 382:674–675

    PubMed  CAS  Google Scholar 

  18. 18.

    Giri RK et al (2004) Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91:1199–1210

    PubMed  CAS  Google Scholar 

  19. 19.

    Yang F et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    PubMed  CAS  Google Scholar 

  20. 20.

    Ryu EK et al (2006) Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging. J Med Chem 49:6111–6119

    PubMed  CAS  Google Scholar 

  21. 21.

    Park SY, Kim DS (2002) Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod 65:1227–1231

    PubMed  CAS  Google Scholar 

  22. 22.

    Frautschy SA et al (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005

    PubMed  CAS  Google Scholar 

  23. 23.

    Chonpathompikunlert P et al. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48:798–802

  24. 24.

    Chauhan NB (2006) Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J Ethnopharmacol 108:385–394

    PubMed  Google Scholar 

  25. 25.

    Gupta VB et al (2009) Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother Res 23:111–115

    PubMed  Google Scholar 

  26. 26.

    Gupta VB, Rao KS (2007) Anti-amyloidogenic activity of S-allyl-L-cysteine and its activity to destabilize Alzheimer’s beta-amyloid fibrils in vitro. Neurosci Lett 429:75–80

    PubMed  CAS  Google Scholar 

  27. 27.

    Peng Q et al (2002) Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med Sci Monit 8:BR328–BR337

    PubMed  CAS  Google Scholar 

  28. 28.

    Iuvone T et al (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317:1143–1149

    PubMed  CAS  Google Scholar 

  29. 29.

    Huang SH et al (2008) Protective effects of Angelica sinensis extract on amyloid beta-peptide-induced neurotoxicity. Phytomedicine 15:710–721

    PubMed  CAS  Google Scholar 

  30. 30.

    Yan JJ et al (2004) Protection against beta-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog Neuropsychopharmacol Biol Psychiatry 28:25–30

    PubMed  CAS  Google Scholar 

  31. 31.

    Lemkul JA, Bevan DR Destabilizing Alzheimer’s Abeta(42) protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49:3935–3946

  32. 32.

    Guo JP et al Simple in vitro assays to identify amyloid-beta aggregation blockers for Alzheimer’s disease therapy. J Alzheimers Dis 19:1359–1370

  33. 33.

    Chung YK et al (2001) Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase. Mol Cells 11:137–143

    PubMed  Google Scholar 

  34. 34.

    Jukic M et al (2007) In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res 21:259–261

    PubMed  CAS  Google Scholar 

  35. 35.

    Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339:1130–1143

    PubMed  CAS  Google Scholar 

  36. 36.

    Jomova K et al. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem

  37. 37.

    Olanow CW et al (2003) Neuroprotection for Parkinson’s disease: prospects and promises. Ann Neurol 53(Suppl 3):S1–S2

    PubMed  Google Scholar 

  38. 38.

    Drukarch B et al (2006) The antioxidant anethole dithiolethione inhibits monoamine oxidase-B but not monoamine oxidase A activity in extracts of cultured astrocytes. J Neural Transm 113:593–598

    PubMed  CAS  Google Scholar 

  39. 39.

    Martin TM et al (2006) The effect of conventional and sustained delivery of thymoquinone and levodopa on SH-SY5Y human neuroblastoma cells. Biomed Sci Instrum 42:332–337

    PubMed  Google Scholar 

  40. 40.

    Radad K et al (2009) Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res 23:696–700

    PubMed  CAS  Google Scholar 

  41. 41.

    Kim SJ et al (2006) Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. NeuroReport 17:1729–1733

    PubMed  CAS  Google Scholar 

  42. 42.

    Filomeni G et al Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging

  43. 43.

    Qu W et al (2009) Kaempferol derivatives prevent oxidative stress-induced cell death in a DJ-1-dependent manner. J Pharmacol Sci 110:191–200

    PubMed  CAS  Google Scholar 

  44. 44.

    Xu Q et al (2008) Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson’s disease. Toxicology 245:101–108

    PubMed  CAS  Google Scholar 

  45. 45.

    Bournival J et al (2009) Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 29:1169–1180

    PubMed  CAS  Google Scholar 

  46. 46.

    Vauzour D et al Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Mol Nutr Food Res 54:532–542

  47. 47.

    Tarozzi A et al (2009) Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem 111:1161–1171

    PubMed  CAS  Google Scholar 

  48. 48.

    Han JM et al (2007) Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther 321:249–256

    PubMed  CAS  Google Scholar 

  49. 49.

    Wang MS et al. Curcumin reduces alpha-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57

  50. 50.

    Pandey N et al (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 115:479–489

    PubMed  CAS  Google Scholar 

  51. 51.

    Li X et al (2008) c-Jun N-terminal kinase mediates lactacystin-induced dopamine neuron degeneration. J Neuropathol Exp Neurol 67:933–944

    PubMed  CAS  Google Scholar 

  52. 52.

    Wang W et al (2004) SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 48:195–202

    PubMed  CAS  Google Scholar 

  53. 53.

    Pan J et al (2007) Expression of FasL and its interaction with Fas are mediated by c-Jun N-terminal kinase (JNK) pathway in 6-OHDA-induced rat model of Parkinson disease. Neurosci Lett 428:82–87

    PubMed  CAS  Google Scholar 

  54. 54.

    Yu S et al Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64

  55. 55.

    Wang J et al (2009) Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem Pharmacol 78:178–183

    PubMed  CAS  Google Scholar 

  56. 56.

    Harish G et al Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson’s disease. Bioorg Med Chem 18:2631–2638

  57. 57.

    Beal MF (2009) Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S189–S194

    PubMed  Google Scholar 

  58. 58.

    Ono K et al (2008) Alpha-synuclein assembly as a therapeutic target of Parkinson’s disease and related disorders. Curr Pharm Des 14:3247–3266

    PubMed  CAS  Google Scholar 

  59. 59.

    Jagatha B et al (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 44:907–917

    PubMed  CAS  Google Scholar 

  60. 60.

    Mythri RB et al (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9:399–408

    PubMed  CAS  Google Scholar 

  61. 61.

    Chen J et al (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    PubMed  CAS  Google Scholar 

  62. 62.

    Zbarsky V et al (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    PubMed  CAS  Google Scholar 

  63. 63.

    Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacol 16:96–99

    CAS  Google Scholar 

  64. 64.

    Yang S et al (2008) Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res 33:2044–2053

    PubMed  CAS  Google Scholar 

  65. 65.

    Goel A et al (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    PubMed  CAS  Google Scholar 

  66. 66.

    Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64

    PubMed  CAS  Google Scholar 

  67. 67.

    Ortiz-Ortiz MA et al Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci Lett 468:120–124

  68. 68.

    Kabuto H et al (2005) Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum. Neurochem Res 30:325–332

    PubMed  CAS  Google Scholar 

  69. 69.

    Kabuto H et al (2007) Eugenol [2-methoxy-4-(2-propenyl)phenol] prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. Biol Pharm Bull 30:423–427

    PubMed  CAS  Google Scholar 

  70. 70.

    Zhang ZT et al Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 31:900–906

  71. 71.

    Bangaru ML et al Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells. Anticancer Res 30:499–504

  72. 72.

    Elamin MH et al Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog 49:302–314

  73. 73.

    Schaaf C et al (2010) Curcumin inhibits the growth, induces apoptosis and modulates the function of pituitary folliculostellate cells. Neuroendocrinology 91:200–210

    PubMed  CAS  Google Scholar 

  74. 74.

    Aoki H et al (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    PubMed  CAS  Google Scholar 

  75. 75.

    Dhandapani KM et al (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 102:522–538

    PubMed  CAS  Google Scholar 

  76. 76.

    Liu E et al (2007) Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neurooncol 85:263–270

    PubMed  CAS  Google Scholar 

  77. 77.

    Gao X et al (2005) Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria. J Exp Ther Oncol 5:39–48

    PubMed  Google Scholar 

  78. 78.

    Kim SY et al (2005) Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells. Biochem Biophys Res Commun 337:510–516

    PubMed  CAS  Google Scholar 

  79. 79.

    Karmakar S et al (2007) Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res 32:2103–2113

    PubMed  CAS  Google Scholar 

  80. 80.

    Vanisree AJ, Ramanan R (2007) In vitro assessment of curcumin against murine neuroblastoma cells. Neuro Endocrinol Lett 28:204–212

    PubMed  Google Scholar 

  81. 81.

    Luthra PM et al (2009) Demethoxycurcumin induces Bcl-2 mediated G2/M arrest and apoptosis in human glioma U87 cells. Biochem Biophys Res Commun 384:420–425

    PubMed  CAS  Google Scholar 

  82. 82.

    Schaaf C et al (2009) Curcumin acts as anti-tumorigenic and hormone-suppressive agent in murine and human pituitary tumour cells in vitro and in vivo. Endocr Relat Cancer 16:1339–1350

    PubMed  CAS  Google Scholar 

  83. 83.

    Aravindan N et al (2008) Curcumin inhibits NFkappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Ther 7:569–576

    PubMed  CAS  Google Scholar 

  84. 84.

    Freudlsperger C et al (2008) Curcumin induces apoptosis in human neuroblastoma cells via inhibition of NFkappaB. Anticancer Res 28:209–214

    PubMed  CAS  Google Scholar 

  85. 85.

    Richeux F et al (1999) Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cells SHSY-5Y. Arch Toxicol 73:403–409

    PubMed  CAS  Google Scholar 

  86. 86.

    Kim DS, Oppel MN (2002) Shogaols from Zingiber officinale protect IMR32 human neuroblastoma and normal human umbilical vein endothelial cells from beta-amyloid(25–35) insult. Planta Med 68:375–376

    PubMed  CAS  Google Scholar 

  87. 87.

    Huang HC et al (2009) Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 48:517–531

    PubMed  CAS  Google Scholar 

  88. 88.

    Tsai NM et al (2005) The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clin Cancer Res 11:3475–3484

    PubMed  Google Scholar 

  89. 89.

    Lee WH et al (2006) Biological inhibitory effects of the Chinese herb danggui on brain astrocytoma. Pathobiology 73:141–148

    PubMed  Google Scholar 

  90. 90.

    Tsai NM et al (2006) The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem 99:1251–1262

    PubMed  CAS  Google Scholar 

  91. 91.

    Lin PC et al (2008) Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J Neurochem 106:1017–1026

    PubMed  CAS  Google Scholar 

  92. 92.

    Jang SW et al (2007) Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc Natl Acad Sci USA 104:16329–16334

    PubMed  CAS  Google Scholar 

  93. 93.

    Qiang L et al (2008) Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study. Biochem Pharmacol 75:1083–1092

    PubMed  CAS  Google Scholar 

  94. 94.

    Aktas O et al (2007) Neurodegeneration in autoimmune demyelination: recent mechanistic insights reveal novel therapeutic targets. J Neuroimmunol 184:17–26

    PubMed  CAS  Google Scholar 

  95. 95.

    Xie L et al (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581

    PubMed  CAS  Google Scholar 

  96. 96.

    Chearwae W, Bright JJ (2008) 15-deoxy-Delta(12, 14)-prostaglandin J(2) and curcumin modulate the expression of toll-like receptors 4 and 9 in autoimmune T lymphocyte. J Clin Immunol 28:558–570

    PubMed  CAS  Google Scholar 

  97. 97.

    Fahey AJ et al (2007) Curcumin modulation of IFN-beta and IL-12 signalling and cytokine induction in human T cells. J Cell Mol Med 11:1129–1137

    PubMed  CAS  Google Scholar 

  98. 98.

    Theoharides TC (2009) Luteolin as a therapeutic option for multiple sclerosis. J Neuroinflammation 6:29

    PubMed  Google Scholar 

  99. 99.

    Sternberg Z et al (2009) Immunomodulatory responses of peripheral blood mononuclear cells from multiple sclerosis patients upon in vitro incubation with the flavonoid luteolin: additive effects of IFN-beta. J Neuroinflammation 6:28

    PubMed  Google Scholar 

  100. 100.

    Sternberg Z et al (2008) Quercetin and interferon-beta modulate immune response(s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients. J Neuroimmunol 205:142–147

    PubMed  CAS  Google Scholar 

  101. 101.

    Sayyah M et al (2004) Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. J Ethnopharmacol 94:283–287

    PubMed  CAS  Google Scholar 

  102. 102.

    Song J et al (2008) DNA topoisomerase I inhibitors ameliorate seizure-like behaviors and paralysis in a Drosophila model of epilepsy. Neuroscience 156:722–728

    PubMed  CAS  Google Scholar 

  103. 103.

    Jager AK et al (2009) Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother Res 23:1642–1644

    PubMed  CAS  Google Scholar 

  104. 104.

    Dib B, Falchi M (1996) Convulsions and death induced in rats by Tween 80 are prevented by capsaicin. Int J Tissue React 18:27–31

    PubMed  CAS  Google Scholar 

  105. 105.

    Mehla J et al Protective effect of curcumin against seizures and cognitive impairment in a pentylenetetrazole-kindled epileptic rat model. Life Sci

  106. 106.

    Kulkarni SK, Dhir A An overview of curcumin in neurological disorders. Indian J Pharm Sci 72:149–154

  107. 107.

    Gupta YK et al (2009) Protective effect of curcumin against kainic acid induced seizures and oxidative stress in rats. Indian J Physiol Pharmacol 53:39–46

    PubMed  CAS  Google Scholar 

  108. 108.

    Muller M et al (2006) Effect of eugenol on spreading depression and epileptiform discharges in rat neocortical and hippocampal tissues. Neuroscience 140:743–751

    PubMed  CAS  Google Scholar 

  109. 109.

    Neto AC et al (2009) The role of polar phytocomplexes on anticonvulsant effects of leaf extracts of Lippia alba (Mill.) N.E. Brown chemotypes. J Pharm Pharmacol 61:933–939

    PubMed  CAS  Google Scholar 

  110. 110.

    D’Hooge R et al (1996) Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists. Arzneimittelforschung 46:557–560

    PubMed  Google Scholar 

  111. 111.

    Joshi D et al (2005) Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsions. J Med Food 8:392–396

    PubMed  CAS  Google Scholar 

  112. 112.

    Song J et al (2007) Seizure suppression by top1 mutations in Drosophila. J Neurosci 27:2927–2937

    PubMed  CAS  Google Scholar 

  113. 113.

    Ellens DJ et al (2009) Development of spike-wave seizures in C3H/HeJ mice. Epilepsy Res 85:53–59

    PubMed  Google Scholar 

  114. 114.

    Who (2006) Depression. Available from: www.who.int/mental_health/management/depression/definition/en/print.html

  115. 115.

    Coppen A, Bailey J (2000) Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J Affect Disord 60:121–130

    PubMed  CAS  Google Scholar 

  116. 116.

    Goldman LS et al (1999) Awareness, diagnosis, and treatment of depression. J Gen Intern Med 14:569–580

    PubMed  CAS  Google Scholar 

  117. 117.

    NCCAM (2004) What is complementary and alternative medicine? Available from: http://nccam.nih.gov/health/whatiscam/

  118. 118.

    Kulkarni SK et al (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacol Berl 201:435–442

    CAS  Google Scholar 

  119. 119.

    Kulkarni S et al (2009) Potentials of curcumin as an antidepressant. ScientificWorldJournal 9:1233–1241

    PubMed  CAS  Google Scholar 

  120. 120.

    Xu Y et al (2005) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82:200–206

    PubMed  CAS  Google Scholar 

  121. 121.

    Nakazawa T et al (2003) Antidepressant-like effects of apigenin and 2, 4, 5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 26:474–480

    PubMed  CAS  Google Scholar 

  122. 122.

    Irie Y et al (2004) Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus. Brain Res 1011:243–246

    PubMed  CAS  Google Scholar 

  123. 123.

    Li S et al (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80:1373–1381

    PubMed  CAS  Google Scholar 

  124. 124.

    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  125. 125.

    Jiang J et al (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 561:54–62

    PubMed  CAS  Google Scholar 

  126. 126.

    Zhao J et al Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35:374–379

  127. 127.

    Rathore P et al (2008) Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res 33:1672–1682

    PubMed  CAS  Google Scholar 

  128. 128.

    Shukla PK et al (2008) Anti-ischemic effect of curcumin in rat brain. Neurochem Res 33:1036–1043

    PubMed  CAS  Google Scholar 

  129. 129.

    Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985

    PubMed  CAS  Google Scholar 

  130. 130.

    Li CY, Cheng XS (2007) Effects of allicin on changes of hemorheology in focal cerebral ischemia-reperfusion injury. Zhongguo Zhong Yao Za Zhi 32:1314–1317

    PubMed  CAS  Google Scholar 

  131. 131.

    Ha SK et al (2008) Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem Int 52:878–886

    PubMed  CAS  Google Scholar 

  132. 132.

    Lopez-Sanchez C et al (2007) Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res 1182:123–137

    PubMed  CAS  Google Scholar 

  133. 133.

    Rivera F et al (2008) Reduction of ischemic brain damage and increase of glutathione by a liposomal preparation of quercetin in permanent focal ischemia in rats. Neurotox Res 13:105–114

    PubMed  CAS  Google Scholar 

  134. 134.

    Zhao J et al (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393:108–112

    PubMed  CAS  Google Scholar 

  135. 135.

    Marchbanks RM et al (2003) A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 65:33–38

    PubMed  CAS  Google Scholar 

  136. 136.

    Mizuno M et al (2008) The anthraquinone derivative Emodin ameliorates neurobehavioral deficits of a rodent model for schizophrenia. J Neural Transm 115:521–530

    PubMed  CAS  Google Scholar 

  137. 137.

    Caughey B et al (2003) Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 77:5499–5502

    PubMed  CAS  Google Scholar 

  138. 138.

    Hafner-Bratkovic I et al (2008) Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein—a new mechanism for the inhibition of PrP(Sc) accumulation. J Neurochem 104:1553–1564

    PubMed  CAS  Google Scholar 

  139. 139.

    Weisfelt M et al (2007) Bacterial meningitis: a review of effective pharmacotherapy. Expert Opin Pharmacother 8:1493–1504

    PubMed  CAS  Google Scholar 

  140. 140.

    Davis LE et al (1994) In vitro synergism of concentrated Allium sativum extract and amphotericin B against Cryptococcus neoformans. Planta Med 60:546–549

    PubMed  CAS  Google Scholar 

  141. 141.

    Shen J et al (1996) Enhanced diallyl trisulfide has in vitro synergy with amphotericin B against Cryptococcus neoformans. Planta Med 62:415–418

    PubMed  CAS  Google Scholar 

  142. 142.

    Tajik H et al (2007) Interaction between curcumin and opioid system in the formalin test of rats. Pak J Biol Sci 10:2583–2586

    PubMed  CAS  Google Scholar 

  143. 143.

    Tajik H et al (2008) The effect of curcumin (active substance of turmeric) on the acetic acid-induced visceral nociception in rats. Pak J Biol Sci 11:312–314

    PubMed  CAS  Google Scholar 

  144. 144.

    Matsushita Y, Ueda H (2009) Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. NeuroReport 20:63–68

    PubMed  CAS  Google Scholar 

  145. 145.

    Baum L et al (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113

    PubMed  Google Scholar 

  146. 146.

    Masoumi A et al (2009) 1alpha, 25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 17:703–717

    PubMed  CAS  Google Scholar 

  147. 147.

    Ambegaokar SS et al (2003) Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuro Endocrinol Lett 24:469–473

    PubMed  CAS  Google Scholar 

  148. 148.

    Ghayur MN et al (2008) Muscarinic, Ca(++) antagonist and specific butyrylcholinesterase inhibitory activity of dried ginger extract might explain its use in dementia. J Pharm Pharmacol 60:1375–1383

    PubMed  CAS  Google Scholar 

  149. 149.

    Theoharides TC et al (2007) Mast cells, T cells, and inhibition by luteolin: implications for the pathogenesis and treatment of multiple sclerosis. Adv Exp Med Biol 601:423–430

    PubMed  Google Scholar 

  150. 150.

    Abila B et al (1993) Anticonvulsant effects of extracts of the West African black pepper, Piper guineense. J Ethnopharmacol 39:113–117

    PubMed  CAS  Google Scholar 

  151. 151.

    Guenette SA et al (2007) Pharmacokinetics of eugenol and its effects on thermal hypersensitivity in rats. Eur J Pharmacol 562:60–67

    PubMed  CAS  Google Scholar 

  152. 152.

    Zhan C, Yang J (2006) Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol Res 53:303–309

    PubMed  CAS  Google Scholar 

  153. 153.

    Yang JW et al (2005) The effects of Chinese herb Angelica in focal cerebral ischemia injury in the rat. Clin Hemorheol Microcirc 32:209–215

    PubMed  Google Scholar 

  154. 154.

    Cheng CY et al (2008) Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med 36:1105–1119

    PubMed  CAS  Google Scholar 

  155. 155.

    Lin Z et al (2008) Herbal formula FBD extracts prevented brain injury and inflammation induced by cerebral ischemia-reperfusion. J Ethnopharmacol 118:140–147

    PubMed  Google Scholar 

  156. 156.

    Zhang L et al (2009) Z-ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi 129:855–859

    PubMed  CAS  Google Scholar 

  157. 157.

    Unchern S et al (1994) Piperine, a pungent alkaloid, is cytotoxic to cultured neurons from the embryonic rat brain. Biol Pharm Bull 17:403–406

    PubMed  CAS  Google Scholar 

  158. 158.

    Qiang LQ et al (2009) Combined administration of the mixture of honokiol and magnolol and ginger oil evokes antidepressant-like synergism in rats. Arch Pharm Res 32:1281–1292

    PubMed  CAS  Google Scholar 

  159. 159.

    Yi LT et al (2009) Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice. Prog Neuropsychopharmacol Biol Psychiatry 33:616–624

    PubMed  Google Scholar 

  160. 160.

    Liontas A, Yeger H (2004) Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res 24:987–998

    PubMed  CAS  Google Scholar 

  161. 161.

    Lee YS et al (2002) Redox status-dependent regulation of cyclooxygenases mediates the capsaicin-induced apoptosis in human neuroblastoma cells. J Environ Pathol Toxicol Oncol 21:113–120

    PubMed  CAS  Google Scholar 

  162. 162.

    Amantini C et al (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102:977–990

    PubMed  CAS  Google Scholar 

  163. 163.

    Baek YM et al (2008) A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics 8:4748–4767

    PubMed  CAS  Google Scholar 

  164. 164.

    DeKosky ST et al (2008) Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 300:2253–2262

    PubMed  CAS  Google Scholar 

  165. 165.

    Ng TP et al (2006) Curry consumption and cognitive function in the elderly. Am J Epidemiol 164:898–906

    PubMed  Google Scholar 

  166. 166.

    Kennedy DO et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr 91:1590–1597

Download references

Acknowledgments

Dr. Aggarwal is the Ransom Horne, Jr., Professor of Cancer Research. This work was partly supported by a grant from a core grant from the National Institutes of Health (CA-16672), a program project grant from National Institutes of Health (NIH CA-124787-01A2), and a grant from the Center for Targeted Therapy of MD Anderson Cancer Center. We thank Michael Worley, Department of Scientific Publications, for editorial assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan Aggarwal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kannappan, R., Gupta, S.C., Kim, J.H. et al. Neuroprotection by Spice-Derived Nutraceuticals: You Are What You Eat!. Mol Neurobiol 44, 142–159 (2011). https://doi.org/10.1007/s12035-011-8168-2

Download citation

Keywords

  • Neurodegenerative diseases
  • Nutraceuticals
  • Neuroprotection
  • Spices
  • Inflammation
  • Alzheimer’s disease
  • Parkinson’s disease