Skip to main content

Advertisement

Log in

The Depolarizing Action of GABA Controls Early Network Activity in the Developing Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Early in postnatal life γ-aminobutyric acid (GABA), the primary inhibitory transmitter in adults, excites targeted neurons by an outwardly directed flux of chloride which results from the unbalance between the cation–chloride cotransporters NKCC1 and KCC2, involved in chloride uptake and extrusion, respectively. This effect contributes to generate synchronized network activity or giant depolarizing potentials (GDPs) in the developing hippocampus. Here, we review some recent data concerning the mechanisms by which GDPs are generated and their functional role in enhancing synaptic efficacy at poorly developed GABAergic and glutamatergic synapses. In adulthood, reshaping neuronal circuits due to changes in chloride homeostasis and to the shift of GABA from hyperpolarizing to depolarizing, has been implicated in several neurological disorders, including epilepsy. Evidence has been recently provided that in chronically nerve growth factor-deprived mice expressing a progressive age-dependent neurodegenerative pathology resembling that observed in patients with Alzheimer’s disease, the reduced expression of mRNA encoding for the Kcc2 gene and the depolarizing action of GABA lead to the reorganization of the neuronal hippocampal network. This may represent a novel mechanism by which GABAergic signaling counterbalances the loss of synaptic activity in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360

    Article  PubMed  CAS  Google Scholar 

  2. Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712

    Article  PubMed  CAS  Google Scholar 

  3. Feller MB, Butts DA, Aaron HL, Rokhsar DS, Shatz CJ (1997) Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19:293–306

    Article  PubMed  CAS  Google Scholar 

  4. Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344

    Article  PubMed  CAS  Google Scholar 

  5. Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    PubMed  CAS  Google Scholar 

  6. Dammerman RS, Flint AC, Noctor S, Kriegstein AR (2000) An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 84:428–434

    PubMed  CAS  Google Scholar 

  7. Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. J Neurosci 21:2343–2360

    PubMed  CAS  Google Scholar 

  8. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416:303–325

    PubMed  CAS  Google Scholar 

  9. Chen G, Trombley PQ, van den Pol AN (1996) Excitatory actions of GABA in developing rat hypothalamic neurones. J Physiol 494:451–464

    PubMed  CAS  Google Scholar 

  10. Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437

    Article  PubMed  CAS  Google Scholar 

  11. O’Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9:94–104

    Article  PubMed  Google Scholar 

  12. Wang J, Reichling DB, Kyrozis A, MacDermott AB (1994) Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci 6:1275–1280

    Article  PubMed  CAS  Google Scholar 

  13. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052

    Article  PubMed  CAS  Google Scholar 

  14. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  Google Scholar 

  15. Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 81:2095–2102

    PubMed  CAS  Google Scholar 

  16. Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 507:219–236

    Article  PubMed  CAS  Google Scholar 

  17. Mohajerani MH, Cherubini E (2005) Spontaneous recurrent network activity in organotypic rat hippocampal slices. Eur J Neurosci 22:107–118

    Article  PubMed  Google Scholar 

  18. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424

    Article  PubMed  CAS  Google Scholar 

  19. Khazipov R, Leinekugel X, Khalilov I, Gaiarsa JL, Ben-Ari Y (1997) Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J Physiol 498:763–772

    PubMed  CAS  Google Scholar 

  20. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255

    Article  PubMed  CAS  Google Scholar 

  21. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  22. Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519

    Article  PubMed  CAS  Google Scholar 

  23. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘ménage à trois’. Trends Neurosci 20:523–529

    Article  PubMed  CAS  Google Scholar 

  24. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  25. Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537

    Article  PubMed  CAS  Google Scholar 

  26. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation–chloride cotransporters and neuronal function. Neuron 61:820–838

    Article  PubMed  CAS  Google Scholar 

  27. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  28. Khirug S, Huttu K, Ludwig A, Smirnov S, Voipio J, Rivera C, Kaila K, Khiroug L (2005) Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices. Eur J Neurosci 21:899–904

    Article  PubMed  Google Scholar 

  29. Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65:247–263

    PubMed  CAS  Google Scholar 

  30. Chudotvorova I, Ivanov A, Rama S, Hubner CA, Pellegrino C, Ben AY, Medina I (2005) Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. J Physiol 566:671–679

    Article  PubMed  CAS  Google Scholar 

  31. Cancedda L, Fiumelli H, Chen K, Poo MM (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27:5224–5235

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Khirug S, Cai C, Ludwig A, Blaesse P, Kolikova J, Afzalov R, Coleman SK, Lauri S, Airaksinen MS, Keinänen K, Khiroug L, Saarma M, Kaila K, Rivera C (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56:1019–1033

    Article  PubMed  CAS  Google Scholar 

  33. Horn Z, Ringstedt T, Blaesse P, Kaila K, Herlenius E (2010) Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism. Eur J Neurosci 31:2142–2155

    Article  PubMed  Google Scholar 

  34. Wang DD, Kriegstein AR (2008) GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci 28:5547–5558

    Article  PubMed  CAS  Google Scholar 

  35. Overstreet-Wadiche LS, Bensen AL, Westbrook GL (2006) Delayed development of adult-generated granule cells in dentate gyrus. J Neurosci 26:2326–2334

    Article  PubMed  CAS  Google Scholar 

  36. Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997) Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:6496–6499

    Article  PubMed  CAS  Google Scholar 

  37. Sipilä ST, Schuchmann S, Voipio J, Yamada J, Kaila K (2006) The cation–chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol 573:765–773

    Article  PubMed  Google Scholar 

  38. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  PubMed  CAS  Google Scholar 

  39. Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  PubMed  CAS  Google Scholar 

  40. Miles R, Wong RK (1987) Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329:724–726

    Article  PubMed  CAS  Google Scholar 

  41. Traub RD, Miles R (1991) Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus. Ann NY Acad Sci 627:277–290

    Article  PubMed  CAS  Google Scholar 

  42. Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K (2005) Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 25:5280–5289

    Article  PubMed  Google Scholar 

  43. Safiulina VF, Zacchi P, Taglialatela M, Yaari Y, Cherubini E (2008) Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus. J Physiol 586:5437–5453

    Article  PubMed  CAS  Google Scholar 

  44. Sipilä ST, Huttu K, Voipio J, Kaila K (2006) Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+-activated K+ current. Eur J Neurosci 23:2330–2338

    Article  PubMed  Google Scholar 

  45. Marchionni I, Omrani A, Cherubini E (2007) In the developing rat hippocampus a tonic GABAA-mediated conductance selectively enhances the glutamatergic drive of principal cells. J Physiol 581:515–528

    Article  PubMed  Google Scholar 

  46. Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y, Aniksztejn L (2002) Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36:1051–1061

    Article  PubMed  CAS  Google Scholar 

  47. Yue C, Yaari Y (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 24:4614–4624

    Article  PubMed  CAS  Google Scholar 

  48. Menendez de la Prida LM, Huberfeld G, Cohen I, Miles R (2006) Threshold behavior in the initiation of hippocampal population bursts. Neuron 49:131–142

    Article  CAS  Google Scholar 

  49. Menendez de la Prida LM, Sanchez-Andres JV (1999) Nonlinear frequency-dependent synchronization in the developing hippocampus. J Neurophysiol 82:202–208

    Google Scholar 

  50. Menendez de la Prida L, Sanchez-Andres JV (2000) Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 97:227–241

    Article  PubMed  CAS  Google Scholar 

  51. Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  CAS  Google Scholar 

  52. Strata F, Atzori M, Molnar M, Ugolini G, Tempia F, Cherubini E (1997) A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J Neurosci 17:1435–1446

    PubMed  CAS  Google Scholar 

  53. Bender RA, Galindo R, Mameli M, Gonzalez-Vega R, Valenzuela CF, Baram TZ (2005) Synchronized network activity in developing rat hippocampus involves regional hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function. Eur J Neurosci 22:2669–2674

    Article  PubMed  Google Scholar 

  54. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  PubMed  CAS  Google Scholar 

  55. Crépel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R (2007) A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus. Neuron 54:105–120

    Article  PubMed  Google Scholar 

  56. Durand GM, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75

    Article  PubMed  CAS  Google Scholar 

  57. Voronin LL, Cherubini E (2004) ‘Deaf, mute and whispering’ silent synapses: their role in synaptic plasticity. J Physiol 557:3–12

    Article  PubMed  CAS  Google Scholar 

  58. Safiulina VF, Fattorini G, Conti F, Cherubini E (2006) GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J Neurosci 26:597–608

    Article  PubMed  CAS  Google Scholar 

  59. Kasyanov AM, Safiulina VF, Voronin LL, Cherubini E (2004) GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc Natl Acad Sci USA 101:3967–3972

    Article  PubMed  CAS  Google Scholar 

  60. Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3-CA1 connections in the hippocampus. Proc Natl Acad Sci USA 104:13176–13181

    Article  PubMed  CAS  Google Scholar 

  61. Goodman LJ, Valverde J, Lim F, Geschwind MD, Federoff HJ, Geller AI, Hefti F (1996) Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cell Neurosci 7:222–238

    Article  PubMed  CAS  Google Scholar 

  62. Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374

    Article  PubMed  CAS  Google Scholar 

  63. Magby JP, Bi C, Chen ZY, Lee FS, Plummer MR (2006) Single-cell characterization of retrograde signaling by brain-derived neurotrophic factor. J Neurosci 26:13531–13536

    Article  PubMed  CAS  Google Scholar 

  64. Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32

    Article  PubMed  CAS  Google Scholar 

  65. Fiorentino H, Kuczewski N, Diabira D, Ferrand N, Pangalos MN, Porcher C, Gaiarsa JL (2009) GABA(B) receptor activation triggers BDNF release and promotes the maturation of GABAergic synapses. J Neurosci 29:11650–11661

    Article  PubMed  CAS  Google Scholar 

  66. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  PubMed  CAS  Google Scholar 

  67. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873

    Article  PubMed  CAS  Google Scholar 

  68. Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C, Fukuda A, Akaike N (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci 22:4412–4417

    PubMed  CAS  Google Scholar 

  69. van den Pol AN, Obrietan K, Chen G (1996) Excitatory actions of GABA after neuronal trauma. J Neurosci 16:4283–4292

    PubMed  Google Scholar 

  70. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  PubMed  CAS  Google Scholar 

  71. Funk K, Woitecki A, Franjic-Würtz C, Gensch T, Möhrlen F, Frings S (2008) Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 4:32–44

    Article  PubMed  Google Scholar 

  72. Lagostena L, Rosato-Siri M, D’Onofrio M, Brandi R, Arisi I, Capsoni S, Franzot J, Cattaneo A, Cherubini E (2010) In the adult hippocampus, chronic nerve growth factor deprivation shifts GABAergic signaling from the hyperpolarizing to the depolarizing direction. J Neurosci 30:885–893

    Article  PubMed  CAS  Google Scholar 

  73. Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525

    PubMed  CAS  Google Scholar 

  74. Liu Z, Neff RA, Berg DK (2006) Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science 314:1610–1613

    Article  PubMed  CAS  Google Scholar 

  75. Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci USA 97:6826–6831

    Article  PubMed  CAS  Google Scholar 

  76. Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, Rossi G, Berardi N, Cattaneo A (2000) Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 20:2589–2601

    PubMed  CAS  Google Scholar 

  77. Rosato-Siri M, Cattaneo A, Cherubini E (2006) Nicotine-induced enhancement of synaptic plasticity at CA3-CA1 synapses requires GABAergic interneurons in adult anti-NGF mice. J Physiol 576:361–377

    Article  PubMed  CAS  Google Scholar 

  78. Capsoni S, Giannotta S, Cattaneo A (2002) Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 21:15–28

    Article  PubMed  CAS  Google Scholar 

  79. Pesavento E, Capsoni S, Domenici L, Cattaneo A (2002) Acute cholinergic rescue of synaptic plasticity in the neurodegenerating cortex of anti-nerve-growth-factor mice. Eur J Neurosci 15:1030–1036

    Article  PubMed  Google Scholar 

  80. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipilä S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691

    Article  PubMed  CAS  Google Scholar 

  81. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HT, Mufson EJ, Salehi A, Fahnestock M (2009) Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 29:9321–9329

    Article  PubMed  CAS  Google Scholar 

  82. Barbato C, Ruberti F, Pieri M, Vilardo E, Costanzo M, Ciotti MT, Zona C, Cogoni C (2010) MicroRNA-92 modulates K(+) Cl(−) co-transporter KCC2 expression in cerebellar granule neurons. J Neurochem 113:591–600

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Cherubini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherubini, E., Griguoli, M., Safiulina, V. et al. The Depolarizing Action of GABA Controls Early Network Activity in the Developing Hippocampus. Mol Neurobiol 43, 97–106 (2011). https://doi.org/10.1007/s12035-010-8147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8147-z

Keywords

Navigation