Skip to main content

Advertisement

Log in

Cyclic GMP and Nitric Oxide Synthase in Aging and Alzheimer's Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca2+/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca2+/NO/cGMP pathway in aging and Alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer's disease

CNS:

Central nervous system

cGMP:

Cyclic GMP

PDEs:

Phosphodiesterases

PKG:

cGMP-Dependent protein kinase G

sGC:

Guanylyl cyclase (soluble isoform)

NOS:

NO synthase

References

  1. Abe T, Tohgi H, Murata T, Isobe C, Sato C (2001) Reduction in asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in the cerebrospinal fluid during ageing and in patients with Alzheimer's disease. Neurosci Lett 312:177–179

    Article  CAS  PubMed  Google Scholar 

  2. Atochin DN, Wang A, Liu VW, Critchlow JD, Dantas AP, Looft-Wilson R, Murata T, Salomone S, Shin HK, Ayata C, Moskowitz MA, Michel T, Sessa WC, Huang PL (2007) The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J Clin Invest 117(7):961–967

    Article  CAS  Google Scholar 

  3. Baltrons MA, Pifarré P, Ferrer I, Carot JM, García A (2004) Reduced expression of NO-sensitive guanylyl cyclase in reactive astrocytes of Alzheimer disease, Creutzfeldt-Jakob disease, and multiple sclerosis brains. Neurobiol Dis 17(3):462–472

    Article  CAS  PubMed  Google Scholar 

  4. Barger SW, Fiscus RR, Ruth P, Hofmann F, Mattson MP (1995) Role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of beta-A-beta precursor. J Neurochem 64:2087–2096

    Article  CAS  PubMed  Google Scholar 

  5. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520

    Article  CAS  PubMed  Google Scholar 

  6. Bobba A, Atlante A, Moro L, Calissano P, Marra E (2007) Nitric oxide has dual opposite roles during early and late phases of apoptosis in cerebellar granule neurons. Apoptosis 12(9):1597–1610

    Article  CAS  PubMed  Google Scholar 

  7. Bonkale WL, Winblad B, Ravid R, Cowburn RF (1995) Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer's disease. Neurosci Lett 187:5–8

    Article  CAS  PubMed  Google Scholar 

  8. Caretti A, Bianciardi P, Ronchi R, Fantacci M, Guazzi M, Samaja M (2008) Phosphodiesterase-5 inhibition abolishes neuron apoptosis induced by chronic hypoxia independently of hypoxia-inducible factor-1alpha signaling. Exp Biol Med (Maywood) 233(10):1222–1230

    Article  CAS  Google Scholar 

  9. Chalimoniuk M, Stolecka A, Cakała M, Hauptmann S, Schulz K, Lipka U, Leuner K, Eckert A, Muller WE, Strosznajder JB (2007) A-beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells. Acta Biochim Pol 54(3):611–623

    CAS  PubMed  Google Scholar 

  10. Chalimoniuk M, Strosznajder JB (1998) Ageing modulates nitric oxide synthesis and cGMP levels in hippocampus and cerebellum. Effects of A-beta beta peptide. Mol Chem Neuropathol 35:77–95

    Article  CAS  PubMed  Google Scholar 

  11. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105

    Article  CAS  PubMed  Google Scholar 

  12. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14(11):495–502

    Article  CAS  PubMed  Google Scholar 

  13. Ciani E, Guidi S, Bartesaghi R, Contestabile A (2002) Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. J Neurochem 82:1282–1289

    Article  CAS  PubMed  Google Scholar 

  14. Colton CA, Brown CM, Czapiga M, Vitek MP (2002) Apolipoprotein-E allele-specific regulation of nitric oxide production. Ann N Y Acad Sci 962:212–225

    Article  CAS  PubMed  Google Scholar 

  15. Combs CK, Karlo JC, Kao SC, Landreth GE (2001) A-beta stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188

    CAS  PubMed  Google Scholar 

  16. Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived NO in vivo. J Biol Chem 280(11):10040–10046

    Article  CAS  PubMed  Google Scholar 

  17. Czapski GA, Cakala M, Chalimoniuk M, Gajkowska B, Strosznajder JB (2007) Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. J Neurosci Res 85(8):1694–1703

    Article  CAS  PubMed  Google Scholar 

  18. Danysz W, Zajaczkowski W, Parsons CG (1995) Modulation of learning processes by ionotropic glutamate receptor ligands. Behav Pharmacol 6(5 And 6):455–474

    CAS  PubMed  Google Scholar 

  19. Domek-Łopacińska K, Markerink-van Ittersum M, Steinbusch H, de Vente J (2005) Changes in expression of cGMP selective phosphodiesterases 2, 5 and 9 in the rat brain during ageing. BMC Pharmacology 5(Suppl 1):15

    Article  Google Scholar 

  20. Domek-Łopacińska K, Strosznajder JB (2005) Cyclic GMP metabolism and its role in brain physiology. J Physiol Pharmacol 56(Supplement 2):15–34

    PubMed  Google Scholar 

  21. Domek-Łopacińska K, Strosznajder JB (2008) The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during ageing. Brain Res 1216:68–77

    Article  PubMed  CAS  Google Scholar 

  22. Domek-Łopacińska K, van de Waarenburg M, Markerink-van IM, Steinbusch HW, de Vente J (2005) Nitric oxide-induced cGMP synthesis in the cholinergic system during the development and ageing of the rat brain. Brain Res Dev Brain Res 158(1–2):72–81

    PubMed  Google Scholar 

  23. Faraci FM (2006) Protecting the brain with eNOS: run for your life. Circulation Res 99(10):1029–1030

    Article  CAS  PubMed  Google Scholar 

  24. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190

    Article  CAS  PubMed  Google Scholar 

  25. Garthwaite J (1991) Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci 14:60–67

    Article  CAS  PubMed  Google Scholar 

  26. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  27. Ha KS, Kim KM, Kwon YG, Bai SK, Nam WD, Yoo YM, Kim PK, Chung HT, Billiar TR, Kim YM (2003) Nitric oxide prevents 6 hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J 17:1036–1047

    Article  CAS  PubMed  Google Scholar 

  28. Hilbig H, Holler J, Dinse HR, Bidmon HJ (2002) In contrast to neuronal NOS-I, the inducible NOS-II expression in ageing brains is modified by enriched environmental conditions. Exp Toxicol Pathol 53:427–431

    Article  CAS  PubMed  Google Scholar 

  29. Ibarra C, Nedvetsky PI, Gerlach M, Riederer P, Schmidt HH (2001) Regional and age-dependent expression of the nitric oxide receptor, soluble guanylyl cyclase, in the human brain. Brain Res 907:54–60

    Article  CAS  PubMed  Google Scholar 

  30. Jęśko H, Chalimoniuk M, Strosznajder JB (2003) Activation of constitutive nitric oxide synthase(s) and absence of inducible isoform in aged rat brain. Neurochem Int 42:315–322

    Article  PubMed  Google Scholar 

  31. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Müller-Spahn F, Haass C, Czech C, Pradier L, Müller WE, Eckert A (2004) A-beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 279(48):50310–50320

    Article  CAS  PubMed  Google Scholar 

  32. La Porta CA, Comolli R (1999) Age-dependent modulation of PKC isoforms and NOS activity and expression in rat cortex, striatum, and hippocampus. Exp Gerontol 34(7):863–874

    Article  PubMed  Google Scholar 

  33. Law A, O'Donnell J, Gauthier S, Quirion R (2002) Neuronal and inducible nitric oxide synthase expressions and activities in the hippocampi and cortices of young adult, aged cognitively unimpaired, and impaired Long-Evans rats. Neuroscience 112:267–275

    Article  CAS  PubMed  Google Scholar 

  34. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK (2003) Regional variations and age-related changes in nitric oxide synthase and arginase in the sub-regions of the hippocampus. Neuroscience 119(3):679–687

    Article  CAS  PubMed  Google Scholar 

  35. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK (2004) Age-related changes in nitric oxide synthase and arginase in the rat prefrontal cortex. Neurobiol Aging 25(4):547–552

    Article  CAS  PubMed  Google Scholar 

  36. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK (2005) Hippocampal nitric oxide synthase and arginase and age-associated behavioral deficits. Hippocampus 15(5):642–655

    Article  CAS  PubMed  Google Scholar 

  37. Llansola M, Hernandez-Viadel M, Erceg S, Montoliu C, Felipo V (2009) Increasing the function of the glutamate–nitric oxide–cyclic guanosine monophosphate pathway increases the ability to learn a Y-maze task. J Neurosci Res 87(10):2351–2355

    Article  CAS  PubMed  Google Scholar 

  38. Luth HJ, Munch G, Arendt T (2002) Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation. Brain Res 953:135–143

    Article  PubMed  Google Scholar 

  39. Mattson MP, Guo ZH, Geiger JD (1999) Secreted form of A-beta precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem 73:532–537

    Article  CAS  PubMed  Google Scholar 

  40. Mayhan WG, Arrick DM, Sharpe GM, Sun H (2008) Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress. Microcirculation 15(3):225–236

    Article  CAS  PubMed  Google Scholar 

  41. McCann SM (1997) The nitric oxide hypothesis of aging. Exp Gerontol 32(4–5):431–440

    Article  CAS  PubMed  Google Scholar 

  42. Meyer RC, Spangler EL, Kametani H, Ingram DK (1998) Age-associated memory impairment. Assessing the role of nitric oxide. Ann N Y Acad Sci 854:307–317

    Article  CAS  PubMed  Google Scholar 

  43. Mollace V, Rodino P, Massoud R, Rotiroti D, Nistico G (1995) Age-dependent changes of NO synthase activity in the rat brain. Biochem Biophys Res Commun 215:822–827

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14(4):455–468

    Article  CAS  PubMed  Google Scholar 

  45. Paris D, Town T, Parker TA, Tan J, Humphrey J, Crawford F, Mullan M (1999) Inhibition of Alzheimer's beta-A-beta induced vasoactivity and proinflammatory response in microglia by a cGMP-dependent mechanism. Exp Neurol 157:211–221

    Article  CAS  PubMed  Google Scholar 

  46. Paul V, Reddy L, Ekambaram P (2005) A reversal by l-arginine and sodium nitroprusside of ageing-induced memory impairment in rats by increasing nitric oxide concentration in the hippocampus. Indian J Physiol Pharmacol 49(2):179–186

    CAS  PubMed  Google Scholar 

  47. Piedrafita B, Cauli O, Montoliu C, Felipo V (2007) The function of the glutamate–nitric oxide–cGMP pathway in brain in vivo and learning ability decrease in parallel in mature compared with young rats. Learn Mem 14(4):254–2588

    Article  CAS  PubMed  Google Scholar 

  48. Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O (2005) Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci 25(29):6887–6897

    Article  CAS  PubMed  Google Scholar 

  49. Puzzo D, Staniszewski A, Deng SX, Privitera L, Leznik E, Liu S, Zhang H, Feng Y, Palmeri A, Landry DW, Arancio O (2009) Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer's disease mouse model. J Neurosci 29(25):8075–8086

    Article  CAS  PubMed  Google Scholar 

  50. Quinn J, Davis F, Woodward WR, Eckenstein F (2001) Beta-A-beta plaques induce neuritic dystrophy of nitric oxide-producing neurons in a transgenic mouse model of Alzheimer's disease. Exp Neurol 168:203–212

    Article  CAS  PubMed  Google Scholar 

  51. Reyes-Irisarri E, Markerink-Van IM, Mengod G, de Vente J (2007) Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer's disease human brains. Eur J Neurosci 25(11):3332–3338

    Article  PubMed  Google Scholar 

  52. Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 202(1–3):419–443

    Article  CAS  Google Scholar 

  53. Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A (2007) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558(1–3):107–112

    Article  CAS  PubMed  Google Scholar 

  54. Rutten K, Prickaerts J, Schaenzle G, Rosenbrock H, Blokland A (2008) Sub-chronic rolipram treatment leads to a persistent improvement in long-term object memory in rats. Neurobiol Learn Mem 90(3):569–575

    Article  CAS  PubMed  Google Scholar 

  55. Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ (2008) Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology 54(2):417–427

    Article  CAS  PubMed  Google Scholar 

  56. Siuciak JA, McCarthy SA, Chapin DS, Martin AN (2008) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 197(1):115–126

    Article  CAS  Google Scholar 

  57. Strosznajder JB, Jeśko H, Zambrzycka A, Eckert A, Chalimoniuk M (2004) Age-related alteration of activity and gene expression of endothelial nitric oxide synthase in different parts of the brain in rats. Neurosci Lett 370(2–3):175–179

    Article  CAS  PubMed  Google Scholar 

  58. Vallebuona F, Raiteri M (1995) Age-related changes in the NMDA receptor/nitric oxide/cGMP pathway in the hippocampus and cerebellum of freely moving rats subjected to transcerebral microdialysis. Eur J Neurosci 7:694–701

    Article  CAS  PubMed  Google Scholar 

  59. van der Staay FJ, Rutten K, Bärfacker L, Devry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schröder UH, Hendrix M (2008) The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 55(5):908–918

    Article  PubMed  CAS  Google Scholar 

  60. Wirtz-Brugger F, Giovanni A (2000) Guanosine 3′,5′-cyclic monophosphate mediated inhibition of cell death induced by nerve growth factor withdrawal and beta-A-beta: protective effects of propentofylline. Neuroscience 99:737–750

    Article  CAS  PubMed  Google Scholar 

  61. Yew DT, Wong HW, Li WP, Lai HW, Yu WH (1999) Nitric oxide synthase neurons in different areas of normal aged and Alzheimer's brains. Neuroscience 89:675–689

    Article  CAS  PubMed  Google Scholar 

  62. Yu W, Juang S, Lee J, Liu T, Cheng J (2000) Decrease of neuronal nitric oxide synthase in the cerebellum of aged rats. Neurosci Lett 291(1):37–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Urszula Domek-Łopacińska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domek-Łopacińska, K.U., Strosznajder, J.B. Cyclic GMP and Nitric Oxide Synthase in Aging and Alzheimer's Disease. Mol Neurobiol 41, 129–137 (2010). https://doi.org/10.1007/s12035-010-8104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8104-x

Keyword

Navigation