Skip to main content

Advertisement

Log in

Protection by D609 Through Cell-Cycle Regulation After Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1α and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ARE:

Antioxidant response element

ARNT:

Aryl hydrocarbon receptor nuclear translocator

ASMase:

Acid sphingomyelinase

BDNF:

Brain derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BNIP3:

Bcl2/adenovirus E1B 19kDa interacting protein 3

CC:

Contralateral cortex

CCT:

Cytidine triphosphate (CTP):phosphocholine cytidylyltransferase

Cdk:

Cyclin dependent kinase

CDP-choline:

Cytidine 5′-diphosphocholine

CPT:

CDP-choline:DAG phosphocholine transferase

CTP:

Cytidine triphosphate

D609:

Tricyclodecan-9-yl-xanthogenate

DAG:

1,2-diacylglycerol

EPO:

Erythropoietin

GLUT-1:

Glucose transporter-1

HIF:

Hypoxia-inducible factor

IC:

Ischemic cortex core

IGF-1:

Insulin-like growth factor

IL-1ß:

Interleukin 1ß

IL-6:

Interleukin 6

IP3 :

Inositol 1,4,5-trisphosphate

LPA:

Lyso-phosphatidic acid

OxPC:

Oxidized phosphatidylcholine

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PC-PLC:

PC-phospholipase C

Penum:

Penumbra

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PKC:

Protein kinase C

PLA2 :

Phospholipase A2

PLD:

Phospholipase D

PP:

Protein Phosphatase

pRb:

phospho-Retinoblastoma

Rb:

Retinoblastoma

ROS:

Reactive oxygen species

SM:

Sphingomyelin

Smase:

Sphingomyelinase

SMS:

Sphingomyelin synthase

SPT:

Serine palmitoyltransferase

TNF-α:

Tumor necrosis factor-α

TPA:

12-O-tetradecanoylphorbol-13-acetate

VEGF:

Vascular endothelial growth factor

VHL:

von-Hippel Lindau protein

References

  1. Rashidian J, Iyirhiaro GO, Park DS (2007) Cell cycle machinery and stroke. Biochim Biophys Acta 1772(4):484–493

    CAS  PubMed  Google Scholar 

  2. Wang W, Bu B, Xie M, Zhang M, Yu Z, Tao D (2009) Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 89(1):1–17

    Article  CAS  PubMed  Google Scholar 

  3. Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232–9239

    Article  CAS  PubMed  Google Scholar 

  4. Osuga H, Osuga S, Wang F, Fetni R, Hogan MJ, Slack RS, Hakim AM, Ikeda J-E, Park DS (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci 97(18):10254–10259

    Article  CAS  PubMed  Google Scholar 

  5. Cerbon J, del Carmen Lopez-Sanchez R (2003) Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells. Biochem J 373(Pt 3):917–924

    Article  CAS  PubMed  Google Scholar 

  6. Luberto C, Hannun YA (1998) SM synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does SM synthase account for the putative PC-specific PLC? J Biol Chem 273(23):14550–14559

    Article  CAS  PubMed  Google Scholar 

  7. Amtmann E (1996) The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C. Drugs Exp Clin Res 22(6):287–294

    CAS  PubMed  Google Scholar 

  8. Sultana R, Newman SF, Abdul HM, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA (2006) Protective effect of D609 against amyloid-β 1-42 induced oxidative modification of neuronal proteins: redox proteomics study. J Neurosci Res 84(2):409–417

    Article  CAS  PubMed  Google Scholar 

  9. Zhou DH, Lauderback CM, Yu T, Brown SA, Butterfield DA, Thompson JS (2001) D609 inhibits ionizing radiation-induced oxidative damage by acting as a potent antioxidant. J Pharmacol Exp Ther 298(1):103–109

    CAS  PubMed  Google Scholar 

  10. Perluigi M, Joshi G, Sultana R, Calabrese V, De Marco C, Coccia R, Butterfield DA (2006) In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid β-peptide (1-42)-induced oxidative stress. Neuroscience 138(4):1161–1170

    Article  CAS  PubMed  Google Scholar 

  11. Bai A, Meier GP, Wang Y, Luberto C, Hannun YA, Zhou D (2004) Prodrug modification increases potassium tricyclo[5.2.1.02, 6]-decan-8-yl dithiocarbonate (D609) chemical stability and cytotoxicity against U937 leukemia cells. J Pharmacol Exp Ther 309(3):1051–1059

    Article  CAS  PubMed  Google Scholar 

  12. Chen C, Hu Q, Yan J, Lei J, Qin L, Shi X, Luan L, Yang L, Wang K, Han J, Nanda A, Zhou C (2007) Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1α and apoptotic genes in a middle cerebral artery occlusion induced focal ischemia rat model. J Neurochem 102(6):1831–1841

    Article  CAS  PubMed  Google Scholar 

  13. Monick MM, Carter AB, Gudmundsson G, Mallampalli RK, Powers LS, Hunninghake GW (1999) A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 162(5):3005–3012

    CAS  PubMed  Google Scholar 

  14. Zhang F, Zhao G, Dong Z (2001) Phosphatidylcholine-specific phospholipase C and D in stimulation of RAW264.7 mouse macrophage-like cells by lipopolysaccharide. Intl Immunopharmacol 1(7):1375–1384

    Article  CAS  Google Scholar 

  15. Machleidt T, Kramer B, Adam D, Neumann B, Schutze S, Wiegmann K, Kronke M (1996) Function of the p55 TNF receptor “death domain” mediated by phosphatidylcholine-specific PLC. J Exp Med 184(2):725–733

    Article  CAS  PubMed  Google Scholar 

  16. Li YH, Maher P, Schubert D (1998) Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc Natl Acad Sci 95(13):7748–7753

    Article  CAS  PubMed  Google Scholar 

  17. Singh ATK, Radeff JM, Kunnel JG, Stern PH (2000) Phosphatidylcholine-specific phospholipase C inhibitor, tricyclodecan-9-yl xanthogenate (D609), increases phospholipase D-mediated phosphatidylcholine hydrolysis in UMR-106 osteoblastic osteosarcoma cells. Biochim Biophys Acta 1487(2–3):201–208

    CAS  PubMed  Google Scholar 

  18. Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in TNF-α signaling. Cell 78(6):1005–1015

    Article  CAS  PubMed  Google Scholar 

  19. Kang MS, Jung SY, Jung KM, Kim SK, Ahn KH, Kim DK (2008) D609, an inhibitor of phosphatidylcholine-specific PLC, inhibits group IV cytosolic PLA2. Mol Cells 26(5):481–485

    CAS  PubMed  Google Scholar 

  20. Riboni L, Viani P, Bassi R, Giussani P, Tettamanti G (2001) Basic fibroblast growth factor-induced proliferation of primary astrocytes. Evidence for the involvement of sphingomyelin biosynthesis. J Biol Chem 276(16):12797–12804

    Article  CAS  PubMed  Google Scholar 

  21. Huitema K, van den Dikkenberg J, Brouwers JFHM, Holthuis JCM (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23(1):33–44

    Article  CAS  PubMed  Google Scholar 

  22. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4(8):604–616

    Article  CAS  PubMed  Google Scholar 

  23. Claassen GF, Hann SR (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest. Proc Natl Acad Sci 97(17):9498–9503

    Article  CAS  PubMed  Google Scholar 

  24. Obaya AJ, Kotenko I, Cole MD, Sedivy JM (2002) The proto-oncogene c-myc acts through the cyclin-dependent kinase (Cdk) Inhibitor p27Kip1 to facilitate the activation of Cdk4/6 and early G1 phase progression. J Biol Chem 277(34):31263–31269

    Article  CAS  PubMed  Google Scholar 

  25. Lee JY, Bielawska AE, Obeid LM (2000) Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res 261(2):303–311

    Article  CAS  PubMed  Google Scholar 

  26. Arnold HK, Sears RC (2006) Protein phosphatase 2A regulatory subunit B56α associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26(7):2832–2844

    Article  CAS  PubMed  Google Scholar 

  27. Huwiler A, Pfeilschifter J (2006) Hypoxia and lipid signaling. Biol Chem 387(10/11):1321–1328

    Article  CAS  PubMed  Google Scholar 

  28. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5(6):437–448

    Article  CAS  PubMed  Google Scholar 

  29. Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1α increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27(23):6320–6332

    Article  CAS  PubMed  Google Scholar 

  30. Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22(20):8922–8931

    CAS  PubMed  Google Scholar 

  31. Aragones J, Jones DR, Martin S, Juan MAS, Alfranca A, Vidal F, Vara A, Merida I, Landazuri MO (2001) Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J Biol Chem 276(13):10548–10555

    Article  CAS  PubMed  Google Scholar 

  32. Temes E, Martin-Puig S, Aragones J, Jones DR, Olmos G, Merida I, Landazuri MO (2004) Role of diacylglycerol induced by hypoxia in the regulation of HIF-1α activity. Biochem Biophys Res Commun 315(1):44–50

    Article  CAS  PubMed  Google Scholar 

  33. Teo ST, Yung YC, Herr DR, Chun J (2009) Lysophosphatidic acid in vascular development and Disease. IUBMB Life 61(8):791–799

    Article  CAS  PubMed  Google Scholar 

  34. Correia SC, Moreira PI (2009) Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? J Neurochem 112(1):1–12

    Article  PubMed  CAS  Google Scholar 

  35. Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C, Blouw B, Ouyang L, Dragatsis I, Zeitlin S, Johnson RS, Lipton SA, Barlow C (2005) Brain-specific knock-out of hypoxia-inducible factor-1α reduces rather than increases hypoxic-ischemic damage. J Neurosci 25(16):4099–4107

    Article  CAS  PubMed  Google Scholar 

  36. Piret J-P, Mottet D, Raes M, Michiels C (2002) Is HIF-1α a pro- or an anti-apoptotic protein? Biochem Pharmacol 64(5–6):889–892

    Article  CAS  PubMed  Google Scholar 

  37. Guo S, Miyake M, Liu KJ, Shi H (2009) Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem 108(5):1309–1321

    Article  CAS  PubMed  Google Scholar 

  38. Adibhatla RM, Hatcher JF, Larsen EC, Chen X, Sun D, Tsao F (2006) CDP-choline significantly restores the phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP-phosphocholine cytidylyltransferase after stroke. J Biol Chem 281(10):6718–6725

    Article  CAS  PubMed  Google Scholar 

  39. Dogan A, Baskaya MK, Rao AM, Dempsey RJ (1998) Intraluminal suture occlusion of the middle cerebral artery in spontaneously hypertensive rats. Neurol Res 20(3):265–270

    CAS  PubMed  Google Scholar 

  40. Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J (1999) Cytosolic PLA2 is induced in reactive glia following different forms of neurodegeneration. Glia 27(2):110–128

    Article  CAS  PubMed  Google Scholar 

  41. Adibhatla RM, Hatcher JF, Tureyen K (2005) CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke. Brain Res 1058(1–2):193–197

    PubMed  Google Scholar 

  42. Adibhatla RM, Hatcher JF (2007) Secretory phospholipase A2 IIA is up-regulated by TNF-α and IL-1α/ß after transient focal cerebral ischemia in rat. Brain Res 1134(1):199–205

    Article  CAS  PubMed  Google Scholar 

  43. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10(2):290–293

    CAS  PubMed  Google Scholar 

  44. Adibhatla RM, Hatcher JF, Dempsey RJ (2001) Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke 32(10):2376–2381

    Article  CAS  PubMed  Google Scholar 

  45. Adibhatla RM, Hatcher JF, Dempsey RJ (2004) Cytidine-5′-diphosphocholine (CDP-choline) affects CTP:phosphocholine cytidylyltransferase and lyso-phosphatidylcholine after transient brain ischemia. J Neurosci Res 76(3):390–396

    Article  CAS  PubMed  Google Scholar 

  46. Qin J, Goswami R, Balabanov R, Dawson G (2007) Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J Neurosci Res 85(5):977–984

    Article  CAS  PubMed  Google Scholar 

  47. Gao S, Zhang RL, Greenberg ME, Sun M, Chen X, Levison BS, Salomon RG, Hazen SL (2006) Phospholipid hydroxyalkenals, a subset of recently discovered endogenous CD36 ligands, spontaneously generate novel furan-containing phospholipids lacking CD36 binding activity in vivo. J Biol Chem 281(42):31298–31308

    Article  CAS  PubMed  Google Scholar 

  48. Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antiox Redox Signal 12(1):125–169

    Article  CAS  Google Scholar 

  49. Yu ZF, Nikolova-Karakashian M, Zhou DH, Cheng GJ, Schuchman EH, Mattson MP (2000) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci 15(2):85–97

    Article  CAS  PubMed  Google Scholar 

  50. Kubota M, Narita K, Nakagomi T, Tamura A, Shimasaki H, Ueta N, Yoshida S (1996) Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res 18(4):337–341

    CAS  PubMed  Google Scholar 

  51. Perry RJ, Ridgway ND (2004) The role of de novo ceramide synthesis in the mechanism of action of the tricyclic xanthate D609. J Lipid Res 45(1):164–173

    Article  CAS  PubMed  Google Scholar 

  52. Chou W-H, Messing RO (2005) Protein kinase C isozymes in stroke. Trends Cardiovasc Med 15(2):47–51

    Article  CAS  PubMed  Google Scholar 

  53. Monick MM, Mallampalli RK, Carter AB, Flaherty DM, McCoy D, Robeff PK, Peterson MW, Hunninghake GW (2001) Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. J Immunol 167(10):5977–5985

    CAS  PubMed  Google Scholar 

  54. Walker JL, Assoian RK (2005) Integrin-dependent signal transduction regulating cyclin D1 expression and G1 phase cell cycle progression. Cancer Metastasis Rev 24(3):383–393

    Article  CAS  PubMed  Google Scholar 

  55. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12(22):3499–3511

    Article  CAS  PubMed  Google Scholar 

  56. Luberto C, Kraveka JM, Hannun YA (2002) Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res 27(7/8):609–617

    Article  CAS  PubMed  Google Scholar 

  57. Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14(9):1961–1969

    CAS  PubMed  Google Scholar 

  58. Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585(2–3):114–125

    CAS  PubMed  Google Scholar 

  59. Goodman Y, Mattson MP (1996) Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta peptide toxicity. J Neurochem 66(2):869–872

    CAS  PubMed  Google Scholar 

  60. Shinpo K, Kikuchi S, Moriwaka F, Tashiro K (1999) Protective effects of the TNF-ceramide pathway against glutamate neurotoxicity on cultured mesencephalic neurons. Brain Res 819(1–2):170–173

    Article  CAS  PubMed  Google Scholar 

  61. Ito A, Horigome K (1995) Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. J Neurochem 65(1):463–466

    Article  CAS  PubMed  Google Scholar 

  62. Furuya K, Ginis I, Takeda H, Chen Y, Hallenbeck JM (2001) Cell permeable exogenous ceramide reduces infarct size in spontaneously hypertensive rats supporting in vitro studies that have implicated ceramide in induction of tolerance to ischemia. J Cereb Blood Flow Metab 21(3):226–232

    Article  CAS  PubMed  Google Scholar 

  63. Siddiqui RA, Jenski LJ, Harvey KA, Wiesehan JD, Stillwell W, Zaloga GP (2003) Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem J 371(2):621–629

    Article  CAS  PubMed  Google Scholar 

  64. Zhu X-F, Liu Z-C, Xie B-F, Feng G-K, Zeng Y-X (2003) Ceramide induces cell cycle arrest and upregulates p27kip in nasopharyngeal carcinoma cells. Cancer Lett 193(2):149–154

    Article  CAS  PubMed  Google Scholar 

  65. Adibhatla RM, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40(3):376–387

    Article  CAS  Google Scholar 

  66. Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. In: Quinn PJ, Wang X (eds) Lipids in health and disease, vol. 49. Springer, New York, pp 241–268

    Chapter  Google Scholar 

  67. Kadl A, Bochkov VN, Huber J, Leitinger N (2004) Apoptotic cells as sources for biologically active oxidized phospholipids. Antiox Redox Signal 6(2):311–320

    Article  CAS  Google Scholar 

  68. Bratton DL, Henson PM (2005) Autoimmunity and apoptosis: refusing to go quietly. Nat Med 11(1):26–27

    Article  CAS  PubMed  Google Scholar 

  69. Chang M-K, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, Witztum JL (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200(11):1359–1370

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Q, Chen C, Lu J, Xie M, Pan D, Luo X, Yu Z, Dong Q, Wang W (2009) Cell cycle inhibition attenuates microglial proliferation and production of IL-1beta, MIP-1alpha, and NO after focal cerebral ischemia in the rat. Glia 57(8):908–920

    Article  PubMed  Google Scholar 

  71. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5(8):629–640

    Article  CAS  PubMed  Google Scholar 

  72. Adibhatla RM, Hatcher JF (2008) Integration of cytokine biology and lipid metabolism in stroke. Front Biosci 13(1):1250–1270

    Article  CAS  PubMed  Google Scholar 

  73. Wang N, Lv X, Su L, Zhao B, Zhang S, Miao J (2006) D609 blocks cell survival and induces apoptosis in neural stem cells. Bioorg Med Chem Lett 16(18):4780–4783

    Article  CAS  PubMed  Google Scholar 

  74. Lambertsen KL, Meldgaard M, Ladeby R, Finsen B (2005) A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25(1):119–135

    Article  CAS  PubMed  Google Scholar 

  75. Langley B, D’Annibale MA, Suh K, Ayoub I, Tolhurst A, Bastan B, Yang L, Ko B, Fisher M, Cho S, Beal MF, Ratan RR (2008) Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J Neurosci 28(1):163–176

    Article  CAS  PubMed  Google Scholar 

  76. Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS (2003) Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23(1):359–369

    Article  CAS  PubMed  Google Scholar 

  77. Ng MNP, Kitos TE, Cornell RB (2004) Contribution of lipid second messengers to the regulation of phosphatidylcholine synthesis during cell cycle re-entry. Biochim Biophys Acta 1686(1–2):85–99

    CAS  PubMed  Google Scholar 

  78. Larsen EC, Hatcher JF, Adibhatla RM (2007) Effect of tricyclodecan-9-yl potassium xanthate (D609) on phospholipid metabolism and cell death during oxygen-glucose deprivation in PC12 cells. Neuroscience 146(3):946–961

    Article  CAS  PubMed  Google Scholar 

  79. Antony P, Farooqui AA, Horrocks LA, Freysz L (2001) Effect of D609 on phosphatidylcholine metabolism in the nuclei of LA-N-1 neuroblastoma cells: a key role for diacylglycerol. FEBS Lett 509(1):115–118

    Article  CAS  PubMed  Google Scholar 

  80. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    Article  CAS  PubMed  Google Scholar 

  81. Madinier A, Bertrand N, Mossiat C, Prigent-Tessier A, Beley A, Marie C, Garnier P (2009) Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS ONE 4(12):e8101

    Google Scholar 

  82. Monk PN, Shaw PJ (2006) ALS: life and death in a bad neighborhood. Nat Med 12(8):885–887

    Article  CAS  PubMed  Google Scholar 

  83. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience 158(3):1021–1029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. H. Kalluri, M. Kunnimalaiyaan for helpful discussions, University of Wisconsin Graduate School and School of Medicine and Public Health for supporting this research.

Note added in proof

Recent studies indicate that ablation of proliferating microglia exacerbates ischemic injury in mice after 1 hr tMCAO and reperfusion [80]. This could also suggest that D609 (one dose given at the onset of reperfusion) may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later (2-3 day) proliferation of microglia/macrophages that are the source of trophic factors such as brain derived neurotrophic factor (BDNF) [81] and insulin-like growth factor (IGF-1) in offering protection. Interestingly ablation of proliferating microglia resulted in an increase in the number of cells expressing cytokines TNF-1α, IL-1ß and IL-6. However the identity of these cells was not determined. It will be interesting to resolve whether microglia/macrophages are the primary source of pro-inflammatory cytokines [74] or other cells in the absence of activated microglia/macrophages will still provide the pro-inflammatory cytokines [80]. Defining the role of microglia/macrophages in CNS injury is a challenge since they are the source for both pro-inflammatory as well as neurotrophic factors [8183].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao Muralikrishna Adibhatla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adibhatla, R.M., Hatcher, J.F. Protection by D609 Through Cell-Cycle Regulation After Stroke. Mol Neurobiol 41, 206–217 (2010). https://doi.org/10.1007/s12035-010-8100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8100-1

Keywords