Skip to main content
Log in

The Role of Mitogen-Activated Protein Kinase (MAPK) in Morphine Tolerance and Dependence

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Despite the existence of a large body of information on the subject, the mechanisms of morphine tolerance and dependence are not yet fully understood. There is substantial evidence indicating that mitogen-activated protein kinase (MAPK), a family including extracellular signal-regulated protein kinase, p38 MAPK, and c-Jun N-terminal kinase, can be activated by chronic morphine treatment in the central and peripheral nervous systems and that application of a MAPK inhibitor reduces morphine tolerance and dependence. While the exact mechanism is not completely understood, recent evidence suggests that the activation of MAPK induced by long-term morphine exposure may participate in tolerance and dependence by regulating the downstream targets, such as calcitonin gene-related peptide, substance P, nitric oxide, transient receptor potential vanilloid 1, and proinflammatory cytokines. In this review, we focus on the current understanding of the role of MAPK signaling pathways in morphine tolerance and dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Harrison LM, Kastin AJ, Zadina JE (1998) Opiate tolerance and dependence: receptors, G-proteins, and antiopiates. Peptides 19:1603–1630

    Article  PubMed  CAS  Google Scholar 

  2. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  3. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  4. Ji RR (2004) Mitogen-activated protein kinases as potential targets for pain killers. Curr Opin Investig Drugs 5:71–75

    PubMed  Google Scholar 

  5. Obata K, Noguchi K (2004) MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci 74:2643–2653

    Article  PubMed  CAS  Google Scholar 

  6. Ma W, Quirion R (2005) The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert Opin Ther Targets 9:699–713

    Article  PubMed  CAS  Google Scholar 

  7. Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Zhang YQ (2007) Protein kinases as potential targets for the treatment of pathological pain. Handb Exp Pharmacol (177):359–389

  8. Ji RR, Gereau RW, Malcangio M, Strichartz GR (2008) MAP kinase and pain. Brain Res Rev 60:135–148

    Article  PubMed  Google Scholar 

  9. Mao J, Price DD, Mayer DJ (1995) Mechanisms of hyperalgesia and opiate tolerance: a current view of their possible interactions. Pain 62:259–274

    Article  PubMed  CAS  Google Scholar 

  10. Mayer DJ, Mao J, Holt J, Price DD (1999) Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A 96:7731–7736

    Article  PubMed  CAS  Google Scholar 

  11. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  12. Li L, Chang K (1996) The stimulatory effects of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express μ-opioid receptors. Mol Pharmacol 50:599–602

    PubMed  CAS  Google Scholar 

  13. Gutstein HB, Rubie EA, Mansour A, Akil H (1997) Opioid effects on mitogen-activated protein kinase signaling cascades. Anesthesiology 87:1118–1126

    Article  PubMed  CAS  Google Scholar 

  14. Trapaidze N, Gomes I, Cvejic S, Bansinath M, Devi LA (2000) Opioid receptor endocytosis and activation of MAP kinase pathway. Brain Res Mol Brain Res 76:220–228

    Article  PubMed  CAS  Google Scholar 

  15. Ferrer-Alcón M, García-Fuster MJ, La Harpe R, García-Sevilla JA (2004) Long-term regulation of signaling components of adenylyl cyclase and mitogen-activated protein kinase in the pre-frontal cortex of human opiate addicts. J Neurochem 90:220–230

    Article  PubMed  Google Scholar 

  16. Bilecki W, Zapart G, Ligeza A, Wawrzczak-Bargiela A, Urbański MJ, Przewłocki R (2005) Regulation of the extracellular signal-regulated kinases following acute and chronic opioid treatment. Cell Mol Life Sci 62:2369–2375

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Wang Y, Jiang Z, Wan C, Zhou W, Wang Z (2007) The extracellular signal-regulated kinase signaling pathway is involved in the modulation of morphine-induced reward by mPer1. Neuroscience 146:265–271

    Article  PubMed  CAS  Google Scholar 

  18. Valjent E, Pagès C, Hervé D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  19. Berhow MT, Hiroi N, Nestler EJ (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 16:4707–4715

    PubMed  CAS  Google Scholar 

  20. Hawes JJ, Brunzell DH, Narasimhaiah R, Langel U, Wynick D, Picciotto MR (2008) Galanin protects against behavioral and neurochemical correlates of opiate reward. Neuropsychopharmacology 33:1864–1873

    Article  PubMed  CAS  Google Scholar 

  21. Narita M, Ioka M, Suzuki M, Suzuki T (2002) Effect of repeated administration of morphine on the activity of extracellular signal regulated kinase in the mouse brain. Neurosci Lett 324:97–100

    Article  PubMed  CAS  Google Scholar 

  22. Ortiz J, Harris HW, Guitart X, Terwilliger RZ, Haycock JW, Nestler EJ (1995) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J Neurosci 15:1285–1297

    PubMed  CAS  Google Scholar 

  23. Eitan S, Bryant CD, Saliminejad N, Yang YC, Vojdani E, Keith D Jr, Polakiewicz R, Evans CJ (2003) Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci 23:8360–8369

    PubMed  CAS  Google Scholar 

  24. Schulz S, Höllt V (1998) Opioid withdrawal activates MAP kinase in locus coeruleus neurons in morphine-dependent rats in vivo. Eur J Neurosci 10:1196–1201

    Article  PubMed  CAS  Google Scholar 

  25. Li SX, Wang ZR, Li J, Peng ZG, Zhou W, Zhou M, Lu L (2008) Inhibition of Period1 gene attenuates the morphine-induced ERK-CREB activation in frontal cortex, hippocampus, and striatum in mice. Am J Drug Alcohol Abuse 34:673–682

    Article  PubMed  Google Scholar 

  26. Muller DL, Unterwald EM (2004) In vivo regulation of extracellular signal-regulated protein kinase (ERK) and proteinkinase B (Akt) phosphorylation by acute and chronic morphine. J Pharmacol Exp Ther 310:774–782

    Article  PubMed  CAS  Google Scholar 

  27. Jhamandas KH, Marsala M, Ibuki T, Yaksh T (1996) Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine. J Neurosci 16:2758–2766

    PubMed  CAS  Google Scholar 

  28. Rohde DS, McKay WR, Abbadie C, Basbaum AI (1997) Contribution of sacral spinal cord neurons to the autonomic and somatic consequences of withdrawal from morphine in the rat. Brain Res 745:83–95

    Article  PubMed  CAS  Google Scholar 

  29. Rohde DS, Basbaum AI (1998) Activation of coeruleospinal noradrenergic inhibitory controls during withdrawal from morphine in the rat. J Neurosci 18:4393–4402

    PubMed  CAS  Google Scholar 

  30. Cao JL, He JH, Ding HL, Zeng YM (2005) Activation of the spinal ERK signaling pathway contributes naloxone-precipitated withdrawal in morphine-dependent rats. Pain 118:336–349

    Article  PubMed  CAS  Google Scholar 

  31. Cao JL, Liu HL, Wang JK, Zeng YM (2006) Cross talk between nitric oxide and ERK1/2 signaling pathway in the spinal cord mediates naloxone-precipitated withdrawal in morphine-dependent rats. Neuropharmacology 51:315–326

    Article  PubMed  CAS  Google Scholar 

  32. Wang Z, Ma W, Chabot JG, Quirion R (2009) Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J (in press)

  33. Chen Y, Geis C, Sommer C (2008) Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci 28:5836–5845

    Article  PubMed  CAS  Google Scholar 

  34. Ma W, Zheng WH, Powell K, Jhamandas K, Quirion R (2001) Chronic morphine exposure increases the phosphorylation of MAP kinases and the transcription factor CREB in dorsal root ganglion neurons: an in vitro and in vivo study. Eur J Neurosci 14:1091–1104

    Article  PubMed  CAS  Google Scholar 

  35. Almela P, García-Nogales P, Romero A, Milanés MV, Laorden ML, Puig MM (2009) Effects of chronic inflammation and morphine tolerance on the expression of phospho-ERK 1/2 and phospho-P38 in the injured tissue. Naunyn Schmiedebergs Arch Pharmacol 379:315–323

    Article  PubMed  CAS  Google Scholar 

  36. Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX (2006) Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res 1069:235–243

    Article  PubMed  CAS  Google Scholar 

  37. Liu W, Wang CH, Cui Y, Mo LQ, Zhi JL, Sun SN, Wang YL, Yu HM, Zhao CM, Feng JQ, Chen PX (2006) Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia. Neurosci Lett 410:174–177

    Article  PubMed  CAS  Google Scholar 

  38. Hayward MD, Duman RS, Nestler EL (1990) Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Brain Res 525:256–266

    Article  PubMed  CAS  Google Scholar 

  39. Couceyro P, Douglass J (1995) Precipitated morphine withdrawal stimulates multiple activator protein-1 signaling pathways in rat brain. Mol Pharmacol 47:29–39

    PubMed  CAS  Google Scholar 

  40. Fan XL, Zhang JS, Zhang XQ, Ma L (2003) Chronic morphine treatment and withdrawal induce up-regulation of c-Jun N-terminal kinase 3 gene expression in rat brain. Neuroscience 122:997–1002

    Article  PubMed  CAS  Google Scholar 

  41. Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786

    Article  PubMed  CAS  Google Scholar 

  42. Wang X, Tournier C (2006) Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal 18:753–760

    Article  PubMed  CAS  Google Scholar 

  43. Obata K, Katsura H, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Noguchi K (2007) Roles of extracellular signal-regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain. J Neurochem 102:1569–1584

    Article  PubMed  CAS  Google Scholar 

  44. Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K (2007) Activation of extracellular signal-regulated protein kinases 5 in primary afferent neurons contributes to heat and cold hyperalgesia after inflammation. J Neurochem 102:1614–1624

    Article  PubMed  CAS  Google Scholar 

  45. Xiao C, Zhang L, Cheng QP, Zhang LC (2008) The activation of extracellular signal-regulated protein kinase 5 in spinal cord and dorsal root ganglia contributes to inflammatory pain. Brain Res 1215:76–86

    Article  PubMed  CAS  Google Scholar 

  46. Kamakura S, Moriguchi T, Nishida E (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274:26563–26571

    Article  PubMed  CAS  Google Scholar 

  47. Mody N, Leitch J, Armstrong C, Dixon J, Cohen P (2001) Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett 502:21–24

    Article  PubMed  CAS  Google Scholar 

  48. Moulédous L, Díaz MF, Gutstein HB (2007) Extracellular signal-regulated kinase (ERK) inhibition does not prevent the development or expression of tolerance to and dependence on morphine in the mouse. Pharmacol Biochem Behav 88:39–46

    Article  PubMed  Google Scholar 

  49. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pagès G, Valverde O, Marowsky A, Porrazzo A, Orban PC, Maldonado R, Ehrengruber MU, Cestari V, Lipp HP, Chapman PF, Pouysségur J, Brambilla R (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34:807–820

    Article  PubMed  CAS  Google Scholar 

  50. Cui Y, Liao XX, Liu W, Guo RX, Wu ZZ, Zhao CM, Chen PX, Feng JQ (2008) A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 22:114–123

    Article  PubMed  CAS  Google Scholar 

  51. King T, Ossipov MH, Vanderah TW, Porreca F, Lai J (2005) Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 14:194–205

    Article  PubMed  CAS  Google Scholar 

  52. Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF (2007) Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2:131–146

    Article  Google Scholar 

  53. Menard DP, Rossum DV, Kar S, St-Pierre S, Sutak M, Jhamandas K, Quirion R (1996) A calcitonin gene-related peptide receptor antagonist prevents the development of tolerance to spinal morphine analgesia. J Neurosci 16:2342–2351

    PubMed  CAS  Google Scholar 

  54. Powell KJ, Quirion R, Jhamandas K (2003) Inhibition of neurokinin-1-substance P receptor and prostanoid activity prevents and reverses the development of morphine tolerance in vivo and the morphine-induced increase in CGRP expression in cultured dorsal root ganglion neurons. Eur J Neurosci 18:1572–1583

    Article  PubMed  Google Scholar 

  55. King T, Gardell LR, Wang R, Vardanyan A, Ossipov MH, Malan TP Jr, Vanderah TW, Hunt SP, Hruby VJ, Lai J, Porreca F (2005) Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain 116:276–288

    Article  PubMed  CAS  Google Scholar 

  56. Durham PL, Russo AF (1998) Serotonergic repression of mitogen-activated protein kinase control of the calcitonin gene-related peptide enhancer. Mol Endocrinol 12:1002–1009

    Article  PubMed  CAS  Google Scholar 

  57. Forstermann U, Gath I, Schwarz P, Closs EI, Kleinert H (1995) Isoforms of nitric oxide synthase: properties, cellular distribution and expressional control. Biochem Pharmacol 50:1321–1332

    Article  PubMed  CAS  Google Scholar 

  58. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  59. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  60. Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochim Biophys Acta 1772:989–1003

    PubMed  CAS  Google Scholar 

  61. Chen SR, Prunean A, Pan HM, Welker KL, Pan HL (2007) Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience 145:676–685

    Article  PubMed  CAS  Google Scholar 

  62. Vardanyan A, Wang R, Vanderah TW, Ossipov MH, Lai J, Porreca F, King T (2008) TRPV1 Receptor in expression of opioid-induced hyperalgesia. J Pain 10:243–252

    Article  PubMed  Google Scholar 

  63. Sommer C, Kress M (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 361:184–187

    Article  PubMed  CAS  Google Scholar 

  64. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116–138

    Article  PubMed  CAS  Google Scholar 

  65. McNicol E, Horowicz-Mehler N, Fisk RA, Bennett K, Gialeli-Goudas M, Chew PW, Lau J, Carr D, Americal Pain Society (2003) Management of opioid side effects in cancer-related and chronic noncancer pain: a systematic review. J Pain 4:231–256

    Article  PubMed  Google Scholar 

  66. Ballantyne JC, Mao J (2003) Opioid therapy for chronic pain. N Engl J Med 349:1943–1953

    Article  PubMed  CAS  Google Scholar 

  67. Martini L, Whistler JL (2007) The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 17:556–564

    Article  PubMed  CAS  Google Scholar 

  68. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors of the manuscript declare that there are no conflicts of interest with this review. The work was supported by research funds from the University of Würzburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Sommer, C. The Role of Mitogen-Activated Protein Kinase (MAPK) in Morphine Tolerance and Dependence. Mol Neurobiol 40, 101–107 (2009). https://doi.org/10.1007/s12035-009-8074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8074-z

Keywords

Navigation