The Endocannabinoid System and Alzheimer’s Disease

Abstract

The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Mandavilli A (2006) The amyloid code. Nat Med 12:747–751

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    PubMed  CAS  Google Scholar 

  4. 4.

    McGeer PL, McGeer EG, Yasojima K (2000) Alzheimer disease and neuroinflammation. J Neural Transm Suppl 59:53–57

    PubMed  CAS  Google Scholar 

  5. 5.

    Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease-a double-edged sword. Neuron 35:419–432

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Lleó A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 57:513–533

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Goni F, Sigurdsson EM (2005) New directions towards safer and effective vaccines for Alzheimer’s disease. Curr Opin Mol Ther 7:17–23

    PubMed  CAS  Google Scholar 

  8. 8.

    Aisen PS (2002) The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 1:279–284

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    PubMed  CAS  Google Scholar 

  11. 11.

    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332:127–130

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2:29

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Ramirez BG, Blazquez C, Gomez DP, Guzman M, De Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Esposito G, Izzo AA, Di Rosa M, Iuvone T (2001) Selective cannabinoid CB1 receptor-mediated inhibition of inducible nitric oxide synthase protein expression in C6 rat glioma cells. J Neurochem 78:835–841

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Esposito G, De Filippis D, Steardo L, Scuderi C, Savani C, Cuomo V, Iuvone T (2006) CB1 receptor selective activation inhibits beta-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci Lett 404:342–346

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Van der Stelt M, Mazzola C, Esposito G, Matias I, Petrosino S, De Filippis D, Micale V, Drago F, Iuvone T, Di Marzo V (2006) Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 63:1410–1424

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Esposito G, De Filippis D, Maiuri MC, De Stefano D, Carnuccio R, Iuvone T (2006) Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett 399:91–95

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Esposito G, De Filippis D, Carnuccio R, Izzo AA, Iuvone T (2006) The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J Mol Med 84:253–258

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89:134–141

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445–477

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477:219–225

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Eubanks LM, Rogers CJ, Beuscher AE, Koob GF, Olson AJ, Dickerson TJ, Janda KD (2006) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharmacol 3:773–777

    Article  CAS  Google Scholar 

  27. 27.

    Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernandez-Ruiz JJ, Hansen HS (2001) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78:1415–1427

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Panikashvili D, Simeonidou C, Ben Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141

    PubMed  CAS  Google Scholar 

  30. 30.

    Cabral GA, Marciano-Cabral F (2005) Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 78:1192–1197

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Marchalant Y, Rosi S, Wenk GL (2007) Anti-inflammatory property of the cannabinoid agonist WIN-55212-2 in a rodent model of chronic brain inflammation. Neuroscience 144:1516–1522

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Beal JE, Olson R, Laubenstein L, Morales JO, Bellman P, Yangco B, Lefkowitz L, Plasse TF, Shepard KV (1995) Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage 10:89–97

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Devine ML, Dow GJ, Greenberg BR, Holstein DW, Icaza L, Jue PY, Meyers FH, O’Brien E, Roberts CM, Rocchio GL (1987) Adverse reactions to delta-9-tetrahydrocannabinol given as an antiemetic in a multicenter study. Clin Pharmacol 6:319–322

    CAS  Google Scholar 

  34. 34.

    Strasser F, Luftner D, Possinger K, Ernst G, Ruhstaller T, Meissner W, Ko YD, Schnelle M, Reif M, Cerny T (2006) Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. J Clin Oncol 20;24:3394–3400

    Article  CAS  Google Scholar 

  35. 35.

    Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ (1997) Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 12:913–919

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Walther S, Mahlberg R, Eichmann U, Kunz D (2006) Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl) 185:524–528

    Article  CAS  Google Scholar 

  37. 37.

    Pazos MR, Nunez E, Benito C, Tolon RM, Romero J (2005) Functional neuroanatomy of the endocannabinoid system. Pharmacol Biochem Behav 81:239–247

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63:637–652

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM, Williams K, Romero J (2005) A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 25:2530–2536

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Benito C, Romero JP, Tolon RM, Clemente D, Docagne F, Hillard CJ, Guaza C, Romero J (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by the Spanish Ministry of Education and Science (MEC-SAF 2004/00237) and by Mapfre Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julián Romero.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benito, C., Núñez, E., Pazos, M.R. et al. The Endocannabinoid System and Alzheimer’s Disease. Mol Neurobiol 36, 75–81 (2007). https://doi.org/10.1007/s12035-007-8006-8

Download citation

Keywords

  • Endocannabinoid system
  • Alzheimer’s disease
  • Animal models