Molecular Neurobiology

, Volume 36, Issue 1, pp 75–81 | Cite as

The Endocannabinoid System and Alzheimer’s Disease

  • Cristina Benito
  • Estefanía Núñez
  • María Ruth Pazos
  • Rosa María Tolón
  • Julián RomeroEmail author


The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.


Endocannabinoid system Alzheimer’s disease Animal models 



The authors’ work is supported by the Spanish Ministry of Education and Science (MEC-SAF 2004/00237) and by Mapfre Foundation.


  1. 1.
    Mandavilli A (2006) The amyloid code. Nat Med 12:747–751PubMedCrossRefGoogle Scholar
  2. 2.
    Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193PubMedCrossRefGoogle Scholar
  3. 3.
    Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339PubMedGoogle Scholar
  4. 4.
    McGeer PL, McGeer EG, Yasojima K (2000) Alzheimer disease and neuroinflammation. J Neural Transm Suppl 59:53–57PubMedGoogle Scholar
  5. 5.
    Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease-a double-edged sword. Neuron 35:419–432PubMedCrossRefGoogle Scholar
  6. 6.
    Lleó A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 57:513–533PubMedCrossRefGoogle Scholar
  7. 7.
    Goni F, Sigurdsson EM (2005) New directions towards safer and effective vaccines for Alzheimer’s disease. Curr Opin Mol Ther 7:17–23PubMedGoogle Scholar
  8. 8.
    Aisen PS (2002) The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 1:279–284PubMedCrossRefGoogle Scholar
  9. 9.
    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421PubMedCrossRefGoogle Scholar
  10. 10.
    Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281PubMedGoogle Scholar
  11. 11.
    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351PubMedCrossRefGoogle Scholar
  13. 13.
    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467PubMedCrossRefGoogle Scholar
  14. 14.
    Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332:127–130PubMedCrossRefGoogle Scholar
  15. 15.
    Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2:29PubMedCrossRefGoogle Scholar
  16. 16.
    Ramirez BG, Blazquez C, Gomez DP, Guzman M, De Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913PubMedCrossRefGoogle Scholar
  17. 17.
    Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445PubMedCrossRefGoogle Scholar
  18. 18.
    Esposito G, Izzo AA, Di Rosa M, Iuvone T (2001) Selective cannabinoid CB1 receptor-mediated inhibition of inducible nitric oxide synthase protein expression in C6 rat glioma cells. J Neurochem 78:835–841PubMedCrossRefGoogle Scholar
  19. 19.
    Esposito G, De Filippis D, Steardo L, Scuderi C, Savani C, Cuomo V, Iuvone T (2006) CB1 receptor selective activation inhibits beta-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci Lett 404:342–346PubMedCrossRefGoogle Scholar
  20. 20.
    Van der Stelt M, Mazzola C, Esposito G, Matias I, Petrosino S, De Filippis D, Micale V, Drago F, Iuvone T, Di Marzo V (2006) Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 63:1410–1424PubMedCrossRefGoogle Scholar
  21. 21.
    Esposito G, De Filippis D, Maiuri MC, De Stefano D, Carnuccio R, Iuvone T (2006) Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett 399:91–95PubMedCrossRefGoogle Scholar
  22. 22.
    Esposito G, De Filippis D, Carnuccio R, Izzo AA, Iuvone T (2006) The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J Mol Med 84:253–258PubMedCrossRefGoogle Scholar
  23. 23.
    Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89:134–141PubMedCrossRefGoogle Scholar
  24. 24.
    Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445–477PubMedCrossRefGoogle Scholar
  25. 25.
    Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477:219–225PubMedCrossRefGoogle Scholar
  26. 26.
    Eubanks LM, Rogers CJ, Beuscher AE, Koob GF, Olson AJ, Dickerson TJ, Janda KD (2006) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharmacol 3:773–777CrossRefGoogle Scholar
  27. 27.
    Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernandez-Ruiz JJ, Hansen HS (2001) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78:1415–1427PubMedCrossRefGoogle Scholar
  28. 28.
    Panikashvili D, Simeonidou C, Ben Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531PubMedCrossRefGoogle Scholar
  29. 29.
    Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141PubMedGoogle Scholar
  30. 30.
    Cabral GA, Marciano-Cabral F (2005) Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 78:1192–1197PubMedCrossRefGoogle Scholar
  31. 31.
    Marchalant Y, Rosi S, Wenk GL (2007) Anti-inflammatory property of the cannabinoid agonist WIN-55212-2 in a rodent model of chronic brain inflammation. Neuroscience 144:1516–1522PubMedCrossRefGoogle Scholar
  32. 32.
    Beal JE, Olson R, Laubenstein L, Morales JO, Bellman P, Yangco B, Lefkowitz L, Plasse TF, Shepard KV (1995) Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage 10:89–97PubMedCrossRefGoogle Scholar
  33. 33.
    Devine ML, Dow GJ, Greenberg BR, Holstein DW, Icaza L, Jue PY, Meyers FH, O’Brien E, Roberts CM, Rocchio GL (1987) Adverse reactions to delta-9-tetrahydrocannabinol given as an antiemetic in a multicenter study. Clin Pharmacol 6:319–322Google Scholar
  34. 34.
    Strasser F, Luftner D, Possinger K, Ernst G, Ruhstaller T, Meissner W, Ko YD, Schnelle M, Reif M, Cerny T (2006) Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. J Clin Oncol 20;24:3394–3400CrossRefGoogle Scholar
  35. 35.
    Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ (1997) Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 12:913–919PubMedCrossRefGoogle Scholar
  36. 36.
    Walther S, Mahlberg R, Eichmann U, Kunz D (2006) Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl) 185:524–528CrossRefGoogle Scholar
  37. 37.
    Pazos MR, Nunez E, Benito C, Tolon RM, Romero J (2005) Functional neuroanatomy of the endocannabinoid system. Pharmacol Biochem Behav 81:239–247PubMedCrossRefGoogle Scholar
  38. 38.
    Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63:637–652PubMedCrossRefGoogle Scholar
  39. 39.
    Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM, Williams K, Romero J (2005) A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 25:2530–2536PubMedCrossRefGoogle Scholar
  40. 40.
    Benito C, Romero JP, Tolon RM, Clemente D, Docagne F, Hillard CJ, Guaza C, Romero J (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402PubMedCrossRefGoogle Scholar
  41. 41.
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Cristina Benito
    • 1
  • Estefanía Núñez
    • 1
  • María Ruth Pazos
    • 1
  • Rosa María Tolón
    • 1
  • Julián Romero
    • 1
    Email author
  1. 1.Laboratorio de Apoyo a la InvestigaciónFundación Hospital AlcorcónAlcorcónSpain

Personalised recommendations