Skip to main content

Advertisement

Log in

Myotubularin-Related (MTMR) Phospholipid Phosphatase Proteins in the Peripheral Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Myotubularin-related proteins (MTMRs) constitute a broad family of ubiquitously expressed phosphatases with 14 members in humans, of which eight are catalytically active phosphatases, while six are catalytically inactive. Active MTMRs possess 3-phosphatase activity toward both PtdIns3P and PtdIns(3, 5)P 2 poliphosphoinositides (PPIn), suggesting an involvement in intracellular trafficking and membrane homeostasis. Among MTMRs, catalytically active MTMR2 and inactive MTMR13 have a nonredundant function in nerve. Loss of either MTMR2 or MTMR13 causes Charcot–Marie–Tooth type 4B1 and B2 neuropathy, respectively, characterized by demyelination and redundant loops of myelin known as myelin outfoldings. In Mtmr2-null mouse nerves, these aberrant foldings occur at 3–4 weeks after birth, a time when myelination is established, and Schwann cells are still elongating to reach the final internodal length. Moreover, Mtmr2-specific ablation in Schwann cells is both sufficient and necessary to provoke CMT4B1 with myelin outfoldings. MTMR2 phospholipid phosphatase might regulate intracellular trafficking events and membrane homeostasis in Schwann cells during postnatal nerve development. In this review, we will discuss recent findings on the MTMR family with a major focus on MTMR2 and MTMR13 and their putative role in Schwann cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salzer JL (2003) Polarized domains of myelinated axons. Neuron 40:297–318

    Article  PubMed  CAS  Google Scholar 

  2. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690

    Article  PubMed  CAS  Google Scholar 

  3. Suter U, Scherer SS (2003) Disease mechanisms in inherited neuropathies. Nat Rev Neurosci 4:714–726

    Article  PubMed  CAS  Google Scholar 

  4. Berger P, Niemann A, Suter U (2006) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot–Marie–Tooth disease). Glia 54:243–257

    Article  PubMed  Google Scholar 

  5. Niemann A, Berger P, Suter U (2006) Pathomechanisms of mutant proteins in Charcot–Marie–Tooth disease. Neuromolecular Med 8:217–242

    Article  PubMed  CAS  Google Scholar 

  6. Bolino A, Muglia M, Conforti FL, LeGuern E, Salih MA, Georgiou DM, Christodoulou K, Hausmanowa-Petrusewicz I, Mandich P, Schenone A et al (2000) Charcot–Marie–Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 25:17–19

    Article  PubMed  CAS  Google Scholar 

  7. Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammadouche T, Chkili T et al (2003) Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot–Marie–Tooth disease associated with early-onset glaucoma. Am J Hum Genet 72:1141–1153

    Article  PubMed  CAS  Google Scholar 

  8. Senderek J, Bergmann C, Weber S, Ketelsen UP, Schorle H, Rudnik-Schoneborn S, Buttner R, Buchheim E, Zerres K (2003) Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot–Marie–Tooth neuropathy type 4B2/11p15. Hum Mol Genet 12:349–356

    Article  PubMed  CAS  Google Scholar 

  9. Laporte J, Bedez F, Bolino A, Mandel JL (2003) Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum Mol Genet 12(Spec No 2):R285–R292

    Article  PubMed  CAS  Google Scholar 

  10. Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412

    Article  PubMed  CAS  Google Scholar 

  11. Schaletzky J, Dove SK, Short B, Lorenzo O, Clague MJ, Barr FA (2003) Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases. Curr Biol 13:504–509

    Article  PubMed  CAS  Google Scholar 

  12. Tsujita K, Itoh T, Ijuin T, Yamamoto A, Shisheva A, Laporte J, Takenawa T (2004) Myotubularin regulates the function of the late endosome through the gram domain-phosphatidylinositol 3,5-bisphosphate interaction. J Biol Chem 279:13817–13824

    Article  PubMed  CAS  Google Scholar 

  13. Berger P, Schaffitzel C, Berger I, Ban N, Suter U (2003) Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module. Proc Natl Acad Sci USA 100:12177–12182

    Article  PubMed  CAS  Google Scholar 

  14. Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223–2229

    PubMed  CAS  Google Scholar 

  15. Zhao R, Qi Y, Chen J, Zhao ZJ (2001) FYVE-DSP2, a FYVE domain-containing dual specificity protein phosphatase that dephosphorylates phosphotidylinositol 3-phosphate. Exp Cell Res 265:329–338

    Article  PubMed  CAS  Google Scholar 

  16. Walker DM, Urbe S, Dove SK, Tenza D, Raposo G, Clague MJ (2001) Characterization of MTMR3. An inositol lipid 3-phosphatase with novel substrate specificity. Curr Biol 11:1600–1605

    Article  PubMed  CAS  Google Scholar 

  17. Kim SA, Taylor GS, Torgersen KM, Dixon JE (2002) Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B Charcot–Marie–Tooth disease. J Biol Chem 277:4526–4531

    Article  PubMed  CAS  Google Scholar 

  18. Laporte J, Liaubet L, Blondeau F, Tronchere H, Mandel JL, Payrastre B (2002) Functional redundancy in the myotubularin family. Biochem Biophys Res Commun 291:305–312

    Article  PubMed  CAS  Google Scholar 

  19. Berger P, Bonneick S, Willi S, Wymann M, Suter U (2002) Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot–Marie–Tooth disease type 4B1. Hum Mol Genet 11:1569–1579

    Article  PubMed  CAS  Google Scholar 

  20. Mochizuki Y, Majerus PW (2003) Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9. Proc Natl Acad Sci USA 100:9768–9773

    Article  PubMed  CAS  Google Scholar 

  21. Tronchere H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel JL, Payrastre B (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312

    Article  PubMed  CAS  Google Scholar 

  22. Taylor GS, Maehama T, Dixon JE (2000) Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA 97:8910–8915

    Article  PubMed  CAS  Google Scholar 

  23. Begley MJ, Taylor GS, Brock MA, Ghosh P, Woods VL, Dixon JE (2006) Molecular basis for substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase. Proc Natl Acad Sci USA 103:927–932

    Article  PubMed  CAS  Google Scholar 

  24. Nandurkar HH, Layton M, Laporte J, Selan C, Corcoran L, Caldwell KK, Mochizuki Y, Majerus PW, Mitchell CA (2003) Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP. Proc Natl Acad Sci USA 100:8660–8665

    Article  PubMed  CAS  Google Scholar 

  25. Lorenzo O, Urbe S, Clague MJ (2006) Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosomerelated functions. J Cell Sci 119:2953–2959

    Article  PubMed  CAS  Google Scholar 

  26. Berger P, Berger I, Schaffitzel C, Tersar K, Volkmer B, Suter U (2006) Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2. Hum Mol Genet 15:569–579

    Article  PubMed  CAS  Google Scholar 

  27. Robinson FL, Dixon JE (2005) The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B Charcot–Marie–Tooth disease. J Biol Chem 280:31699–31707

    Article  PubMed  CAS  Google Scholar 

  28. Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE (2003) Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci USA 100:4492–4497

    Article  PubMed  CAS  Google Scholar 

  29. De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6:487–492

    Article  PubMed  CAS  Google Scholar 

  30. Simonsen A, Wurmser AE, Emr SD, Stenmark H (2001) The role of phosphoinositides in membrane transport. Curr Opin Cell Biol 13:485–492

    Article  PubMed  CAS  Google Scholar 

  31. Balla T (2005) Inositol-lipid binding motifs: signal integrators through protein–lipid and protein–protein interactions. J Cell Sci 118:2093–2104

    Article  PubMed  CAS  Google Scholar 

  32. Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4:201–213

    Article  PubMed  CAS  Google Scholar 

  33. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91

    Article  PubMed  CAS  Google Scholar 

  34. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  35. Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79

    Article  PubMed  CAS  Google Scholar 

  36. Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276:26141–147

    Article  PubMed  CAS  Google Scholar 

  37. Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858

    Article  PubMed  CAS  Google Scholar 

  38. Dove SK, McEwen RK, Mayes A, Hughes DC, Beggs JD, Michell RH (2002) Vac14 controls PtdIns(3,5)P(2) synthesis and Fab1-dependent protein trafficking to the multivesicular body. Curr Biol 12:885–893

    Article  PubMed  CAS  Google Scholar 

  39. Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31:52–63

    Article  PubMed  CAS  Google Scholar 

  40. Laporte J, Blondeau F, Gansmuller A, Lutz Y, Vonesch JL, Mandel JL (2002) The PtdIns3P phosphatase myotubularin is a cytoplasmic protein that also localizes to Rac1-inducible plasma membrane ruffles. J Cell Sci 115:3105–3117

    PubMed  CAS  Google Scholar 

  41. Dang H, Li Z, Skolnik EY, Fares H (2004) Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol Cell 15:189–196

    Article  PubMed  CAS  Google Scholar 

  42. Chaussade C, Pirola L, Bonnafous S, Blondeau F, Brenz-Verca S, Tronchere H, Portis F, Rusconi S, Payrastre B, Laporte J et al (2003) Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol Endocrinol 17:2448–2460

    Article  PubMed  CAS  Google Scholar 

  43. Srivastava S, Ko K, Choudhury P, Li Z, Johnson AK, Nadkarni V, Unutmaz D, Coetzee WA, Skolnik EY (2006) Phosphatidylinositol-3 phosphatase myotubularin-related protein 6 negatively regulates CD4 T cells. Mol Cell Biol 26:5595–5602

    Article  PubMed  CAS  Google Scholar 

  44. Laporte J, Biancalana V, Tanner SM, Kress W, Schneider V, Wallgren-Pettersson C, Herger F, Buj-Bello A, Blondeau F, Liechti-Gallati S et al (2000) MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 15:393–409

    Article  PubMed  CAS  Google Scholar 

  45. Herman GE, Kopacz K, Zhao W, Mills PL, Metzenberg A, Das S (2002) Characterization of mutations in fifty North American patients with X-linked myotubular myopathy. Hum Mutat 19:114–121

    Article  PubMed  CAS  Google Scholar 

  46. Biancalana V, Caron O, Gallati S, Baas F, Kress W, Novelli G, D’Apice MR, Lagier-Tourenne C, Buj-Bello A, Romero NB et al (2003) Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet 112:135–142

    PubMed  Google Scholar 

  47. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    Article  PubMed  CAS  Google Scholar 

  48. Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA 99:15060–15065

    Article  PubMed  CAS  Google Scholar 

  49. Bolino A, Marigo V, Ferrera F, Loader J, Romio L, Leoni A, Di Duca M, Cinti R, Cecchi C, Feltri ML et al (2002) Molecular characterization and expression analysis of Mtmr2, mouse homologue of MTMR2, the Myotubularin-related 2 gene, mutated in CMT4B. Gene 283:17–26

    Article  PubMed  CAS  Google Scholar 

  50. Li JC, Samy ET, Grima J, Chung SS, Mruk D, Lee WM, Silvestrini B, Cheng CY (2000) Rat testicular myotubularin, a protein tyrosine phosphatase expressed by Sertoli and germ cells, is a potential marker for studying cell–cell interactions in the rat testis. J Cell Physiol 185:366–385

    Article  PubMed  CAS  Google Scholar 

  51. Previtali SC, Zerega B, Sherman DL, Brophy PJ, Dina G, King RH, Salih MM, Feltri L, Quattrini A, Ravazzolo R et al (2003) Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet 12:1713–1723

    Article  PubMed  CAS  Google Scholar 

  52. Quattrone A, Gambardella A, Bono F, Aguglia U, Bolino A, Bruni AC, Montesi MP, Oliveri RL, Sabatelli M, Tamburrini O et al (1996) Autosomal recessive hereditary motor and sensory neuropathy with focally folded myelin sheaths: clinical, electrophysiologic, and genetic aspects of a large family. Neurology 46:1318–1324

    PubMed  CAS  Google Scholar 

  53. Parman Y, Battaloglu E, Baris I, Bilir B, Poyraz M, Bissar-Tadmouri N, Williams A, Ammar N, Nelis E, Timmerman V et al (2004) Clinicopathological and genetic study of early-onset demyelinating neuropathy. Brain 127:2540–2550

    Article  PubMed  Google Scholar 

  54. Houlden H, King RH, Wood NW, Thomas PK, Reilly MM (2001) Mutations in the 5′ region of the myotubularin-related protein 2 (MTMR2) gene in autosomal recessive hereditary neuropathy with focally folded myelin. Brain 124:907–915

    Article  PubMed  CAS  Google Scholar 

  55. Nelis E, Erdem S, Tan E, Lofgren A, Ceuterick C, De Jonghe P, Van Broeckhoven C, Timmerman V, Topaloglu H (2002) A novel homozygous missense mutation in the myotubularin-related protein 2 gene associated with recessive Charcot–Marie–Tooth disease with irregularly folded myelin sheaths. Neuromuscul Disord 12:869–873

    Article  PubMed  Google Scholar 

  56. Firestein R, Cleary ML (2001) Pseudo-phosphatase Sbf1 contains an N-terminal GEF homology domain that modulates its growth regulatory properties. J Cell Sci 114:2921–2927

    PubMed  CAS  Google Scholar 

  57. Conforti FL, Muglia M, Mazzei R, Patitucci A, Valentino P, Magariello A, Sprovieri T, Bono F, Bergmann C, Gabriele AL et al (2004) A new SBF2 mutation in a family with recessive demyelinating Charcot–Marie–Tooth (CMT4B2). Neurology 63:1327–1328

    PubMed  CAS  Google Scholar 

  58. Bolino A, Bolis A, Previtali SC, Dina G, Bussini S, Dati G, Amadio S, Del Carro U, Mruk DD, Feltri ML et al (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167:711–721

    Article  PubMed  CAS  Google Scholar 

  59. Bolis A, Coviello S, Bussini S, Dina G, Pardini C, Previtali SC, Malaguti M, Morana P, Del Carro U, Feltri ML et al (2005) Loss of Mtmr2 phosphatase in Schwann cells but not in motor neurons causes Charcot–Marie–Tooth type 4B1 neuropathy with myelin outfoldings. J Neurosci 25:8567–8577

    Article  PubMed  CAS  Google Scholar 

  60. Firestein R, Nagy PL, Daly M, Huie P, Conti M, Cleary ML (2002) Male infertility, impaired spermatogenesis, and azoospermia in mice deficient for the pseudophosphatase Sbf1. J Clin Invest 109:1165–1172

    Article  PubMed  CAS  Google Scholar 

  61. Bonneick S, Boentert M, Berger P, Atanasoski S, Mantei N, Wessig C, Toyka KV, Young P, Suter U (2005) An animal model for Charcot–Marie–Tooth disease type 4B1. Hum Mol Genet 14:3685–3695

    Article  PubMed  CAS  Google Scholar 

  62. Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E (2003) Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 278:15641–15651

    Article  PubMed  CAS  Google Scholar 

  63. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  PubMed  CAS  Google Scholar 

  64. Lee OK, Frese KK, James JS, Chadda D, Chen ZH, Javier RT, Cho KO (2003) Discs-large and strabismus are functionally linked to plasma membrane formation. Nat Cell Biol 5:987–993

    Article  PubMed  CAS  Google Scholar 

  65. Begley MJ, Taylor GS, Kim SA, Veine DM, Dixon JE, Stuckey JA (2003) Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot–Marie–Tooth syndrome. Mol Cell 12:1391–1402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from Telethon Italy and Compagnia San Paolo. A. Bolino is a recipient of a Telethon Associate Scientist Career Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Bolino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolis, A., Zordan, P., Coviello, S. et al. Myotubularin-Related (MTMR) Phospholipid Phosphatase Proteins in the Peripheral Nervous System. Mol Neurobiol 35, 308–316 (2007). https://doi.org/10.1007/s12035-007-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0031-0

Keywords

Navigation