Skip to main content
Log in

Exercise-Induced Neuroprotection in SMA Model Mice: A Means for Determining New Therapeutic Strategies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Due to the prevalence of neuromuscular disorders such as amyotrophic lateral sclerosis and spinal muscular atrophy in modern societies, defining new and efficient strategies for the treatment of these two neurodegenerative diseases has become a vital and still unfulfilled urge. Several lines of experimental evidence have emphasized the benefits of regular exercise training in mouse models for these affections in terms of life span increase and improvement of both motor capacities and motoneuron survival. Identifying molecules that could mimic the neuroprotective effects of exercise represents a promising way to find novel therapies. Some of the effects of exercise are caused by the overproduction of circulating neurotrophic factors, such as IGF-I, whereas others may be due to modifications of the intrinsic properties of the motoneurons within the spinal cord. The causal relationship that links these potential effects of exercise training and the improvement of motor capacity and life span expectancy is consequently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amaducci L, Tesco G (1994) Aging as a major risk for degenerative diseases of the central nervous system. Curr Opin Neurol 7:283–286

    PubMed  CAS  Google Scholar 

  2. Meyer JS, Terayama Y, Konno S, Akiyama H, Margishvili GM, Mortel KF (1998) Risk factors for cerebral degenerative changes and dementia. Eur Neurol 39:7–16

    Article  PubMed  Google Scholar 

  3. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A (1999) Ageing, fitness and neurocognitive function. Nature 400:418–419

    Article  PubMed  CAS  Google Scholar 

  4. Klintsova AY, Cowell RM, Swain RA, Napper RM, Goodlett CR, Greenough WT (1998) Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats. I. Behavioral results. Brain Res 800:48–61

    Article  PubMed  CAS  Google Scholar 

  5. Arkin SM (1999) Elder rehab: a student-supervised exercise program for Alzheimer’s patients. Gerontologist 397:29–35

    Google Scholar 

  6. Larsen JO, Skalicky M, Viidik A (2000) Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 428:213–222

    Article  PubMed  CAS  Google Scholar 

  7. Mattson MP (2000) Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res 886:47–53

    Article  PubMed  CAS  Google Scholar 

  8. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  9. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  PubMed  CAS  Google Scholar 

  10. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364:362

    PubMed  CAS  Google Scholar 

  11. Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26:438–458

    Article  PubMed  CAS  Google Scholar 

  12. Lewin B (1995) Genes for SMA: multum in parvo. Cell 80:1–5

    Article  PubMed  CAS  Google Scholar 

  13. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  14. Lorson CL, Strasswimmer J, Yao JM et al (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66

    Article  PubMed  CAS  Google Scholar 

  15. Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9:259–265

    Article  PubMed  CAS  Google Scholar 

  16. Strickland D, Smith SA, Dolliff G, Goldman L, Roelofs RI (1996) Physical activity, trauma, and ALS: a case-control study. Acta Neurol Scand 94:45–50

    Article  PubMed  CAS  Google Scholar 

  17. Longstreth WT, McGuire V, Koepsell TD, Wang Y, van Belle G (1998) Risk of amyotrophic lateral sclerosis and history of physical activity: a population-based case-control study. Arch Neurol 55:201–206

    Article  PubMed  CAS  Google Scholar 

  18. Armon C, Kurland LT, O’Brien PC, Mulder DW (1991) Antecedent medical diseases in patients with amyotrophic lateral sclerosis. A population-based case-controlled study in Rochester, Minn, 1925 through 1987. Arch Neurol 48:283–286

    PubMed  CAS  Google Scholar 

  19. Drory VE, Goltsman E, Reznik JG, Mosek A, Korczyn AD (2001) The value of muscle exercise in patients with amyotrophic lateral sclerosis. J Neurol Sci 191:133–137

    Article  PubMed  CAS  Google Scholar 

  20. Pinto AC, Alves M, Nogueira A, Evangelista T, Carvalho J, Coelho A, de Carvalho M, Sales-Luis ML (1999) Can amyotrophic lateral sclerosis patients with respiratory insufficiency exercise? J Neurol Sci 169:69–75

    Article  PubMed  CAS  Google Scholar 

  21. Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53:804–807

    Article  PubMed  Google Scholar 

  22. Veldink JH, Bar PR, Joosten EA, Otten M, Wokke JH, van den Berg LH (2003) Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromuscul Disord 13:737–743

    Article  PubMed  CAS  Google Scholar 

  23. Liebetanz D, Hagemann K, von Lewinski F, Kahler E, Paulus W (2004) Extensive exercise is not harmful in amyotrophic lateral sclerosis. Eur J Neurosci 20:3115–3120

    Article  PubMed  Google Scholar 

  24. Kaspar BK, Frost LM, Christian L, Umapathi P, Gage FH (2005) Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol 57:649–655

    Article  PubMed  CAS  Google Scholar 

  25. Grondard C, Biondi O, Armand AS, Lecolle S, Della Gaspera B, Pariset C, Li H, Gallien CC, Vidal PP, Chanoine C, Charbonnier F (2005) Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse. J Neurosci 25:7615–7622

    Article  PubMed  CAS  Google Scholar 

  26. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    Article  PubMed  CAS  Google Scholar 

  27. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci U S A 98:9808–9813

    Article  PubMed  CAS  Google Scholar 

  28. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500–509

    Article  PubMed  CAS  Google Scholar 

  29. Cifuentes-Diaz C, Frugier T, Tiziano FD et al (2001) Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J Cell Biol 152:1107–1114

    Article  PubMed  CAS  Google Scholar 

  30. Guettier-Sigrist S, Coupin G, Braun S et al (1998) Muscle could be the therapeutic target in SMA treatment. J Neurosci Res 53:663–669

    Article  PubMed  CAS  Google Scholar 

  31. Nicole S, Desforges B, Millet G et al (2003) Intact satellite cells lead to remarkable protection against Smn gene defect in differentiated skeletal muscle. J Cell Biol 161:571–582

    Article  PubMed  CAS  Google Scholar 

  32. Taylor NA, Wilkinson JG (1986) Exercise-induced skeletal muscle growth. Hypertrophy or hyperplasia? Sports Med 3:190–200

    PubMed  CAS  Google Scholar 

  33. Tong L, Shen H, Perreau VM et al (2001) Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 8:1046–1056

    Article  PubMed  CAS  Google Scholar 

  34. Lewis ME, Neff NT, Contreras PC, Stong DB, Oppenheim RW, Grebow PE, Vaught JL (1993) Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp Neurol 124:73–88

    Article  PubMed  CAS  Google Scholar 

  35. Festoff BW, Yang SX, Vaught J, Bryan C, Ma JY (1995) The insulin-like growth factor signaling system and ALS neurotrophic factor treatment strategies. J Neurol Sci 129(Suppl):114–121

    Article  PubMed  CAS  Google Scholar 

  36. Purves D, Lichtman JW (1985) Geometrical differences among homologous neurons in mammals. Science 228:298–302

    Article  PubMed  CAS  Google Scholar 

  37. Caroni P, Grandes P (1990) Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol 110:1307–1317

    Article  PubMed  CAS  Google Scholar 

  38. Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20:2926–2933

    PubMed  CAS  Google Scholar 

  39. Carro E, Trejo JL, Busiguina S et al (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684

    PubMed  CAS  Google Scholar 

  40. Wilczak N, de Vos RA, De Keyser J (2003) Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet 361:1007–1011

    Article  PubMed  CAS  Google Scholar 

  41. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842

    Article  PubMed  CAS  Google Scholar 

  42. Vincent AM, Feldman EL (2002) Control of cell survival by IGF signaling pathways. Growth Horm IGF Res 12:193–197

    Article  PubMed  CAS  Google Scholar 

  43. Kermer P, Klocker N, Labes M, Bahr M (2000) Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 20:2–8

    PubMed  CAS  Google Scholar 

  44. Eves EM, Xiong W, Bellacosa A, Kennedy SG, Tsichlis PN, Rosner MR Hay N (1998) Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol 18:2143–2152

    PubMed  CAS  Google Scholar 

  45. Morrow NG, Kraus WE, Moore JW, Williams RS, Swain JL (1990) Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning. J Clin Invest 85:1816–1820

    Article  PubMed  CAS  Google Scholar 

  46. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373:109

    Article  PubMed  CAS  Google Scholar 

  47. Gomez-Pinilla F, Dao L, So V (1997) Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res 764:1–8

    Article  PubMed  CAS  Google Scholar 

  48. Molteni R, Ying Z, Gomez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16:1107–1116

    Article  PubMed  Google Scholar 

  49. Funakoshi H, Belluardo N, Arenas E, Yamamoto Y, Casabona A, Persson H, Ibanez CF (1995) Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268:1495–1499

    Article  PubMed  CAS  Google Scholar 

  50. Gardiner P, Beaumont E, Cormery B (2005) Motoneurones “learn” and “forget” physical activity. Can J Appl Physiol 30:352–370

    PubMed  Google Scholar 

  51. Beaumont E, Gardiner P (2002) Effects of daily spontaneous running on the electrophysiological properties of hindlimb motoneurones in rats. J Physiol 540:129–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Centre National de la Recherche Scientifique and by grants from the Association Française contre les Myopathies and the Centre de Prevention et de Lutte conre le Dopage. Thanks to Dr. C. Pariset for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Charbonnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charbonnier, F. Exercise-Induced Neuroprotection in SMA Model Mice: A Means for Determining New Therapeutic Strategies. Mol Neurobiol 35, 217–223 (2007). https://doi.org/10.1007/s12035-007-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0027-9

Keywords

Navigation