Skip to main content
Log in

Synthesis and characterization of nanostructured mesoporous alumina embedded PES beads for uranium extraction from aqueous radioactive waste

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The removal of uranium from radioactive wastewater is an important step in nuclear waste management. In this study, a solid adsorbent was developed utilizing mesoporous alumina encapsulated within polyethersulfone (PES) beads for effective uranium extraction. The encapsulation process enhances the stability and selectivity of the material, while the mesoporous structure of alumina enables controlled mass transfer and optimal uranium adsorption. These composite beads were synthesized and thoroughly characterized, and their performance was evaluated for uranium removal from simulated radioactive wastewater. The synthesized materials have been characterized by FTIR, TGA–DSC, SEM, EDX and BET surface area analysis techniques to get complete insight into morphology, functionality and topography of materials. Batch adsorption experiments revealed rapid uranium uptake, reaching equilibrium within a short time frame. The maximum adsorption capacity was found to be ~18 mg g−1. These findings establish the potential of mesoporous alumina-encapsulated PES beads as a promising candidate for uranium extraction, offering a valuable contribution to the advancement of radioactive waste treatment technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Tyagi A K and Mohanty A K 2021 Non-power applications of nuclear technologies (BARC publication)

  2. Gudkov S V, Chernikov A V and Bruskov V I 2016 Russ. J. Gen. Chem. 86 1531

    Article  CAS  Google Scholar 

  3. Gadd G M 2000 Curr. Opin. Biotechnol. 11 271

    Article  CAS  PubMed  Google Scholar 

  4. Metilda P, Sanghamitra K, Gladis J M, Naidu G R K and Rao T P 2005 Talanta 65 192

    CAS  PubMed  Google Scholar 

  5. Jain V K, Handa A, Sait S S, Srivastava P and Agarwal Y K 2001 Anal. Chim. Acta 429 237

    Article  CAS  Google Scholar 

  6. Gladis J M and Rao T P 2002 Anal. Bioanal. Chem. 373 867

    Article  CAS  PubMed  Google Scholar 

  7. Hirata S, Ishida Y, Aihara M, Honda K and Shikino O 2001 Anal. Chim. Acta 205 438

    Google Scholar 

  8. Shamsipur M, Yamini Y, Ashtari P, Khanchi A and Ghannadimarageh M 2000 Sci. Technol. 35 1011

    CAS  Google Scholar 

  9. Nelms S M, Greenway G M and Koller D 1996 J. Anal. At. Spectrom. 11 907

    Article  CAS  Google Scholar 

  10. Seyhan S, Merdivan M and Demirel N 2008 J. Hazard. Mater. 79 152

    Google Scholar 

  11. Sadeghi S and Sheikhzadeh E 2009 J. Hazard. Mater. 163 861

    Article  CAS  PubMed  Google Scholar 

  12. Bae S Y, Southard G L and Murray G M 1999 Anal. Chim. Acta 173 397

    Google Scholar 

  13. Northcott S E and Leyden D E 1981 Anal. Chim. Acta 126 117

    Article  CAS  Google Scholar 

  14. Toker Y, Eral M and Hicsonmez U 1998 Analyst 51 123

    Google Scholar 

  15. Kanjilal A, Singh K K, Bairwa K K and Kumar M 2019 Polym. Eng. Sci. 4 863

    Article  Google Scholar 

  16. Singh K, Shah C, Dwivedi C, Kumar M and Bajaj P N 2012 J. Appl. Polym. Sci. 127 410

    Article  Google Scholar 

  17. Xu M, Cai Y, Chen G, Li B, Chen Z, Hu B et al 2022 Nanomater. (Basel) 12 1443

    Article  Google Scholar 

  18. Singh K K, Pathak S K, Kumar M, Mahtele A K, Tripathi S C and Bajaj P N 2013 J. Appl. Polym. Sci. 130 3355

    Article  CAS  Google Scholar 

  19. Huang G, Li W, Liu Q, Liu J, Zhang H, Li R et al 2018 New J. Chem. 42 168

    Article  CAS  Google Scholar 

  20. Cejka J 2003 Appl. Catal. A: Gen. 254 327

    Article  CAS  Google Scholar 

  21. Alvarez M, Zilkova C, Perez N, Pariente J and Cejka 2008 J. Cat. Rev. Sci. Eng. 50 222

    Article  Google Scholar 

  22. Trueba M and Trasatti S P 2005 Eur. J. Inorg. Chem. 17 3393

    Article  Google Scholar 

  23. Fang X S, Ye C H, Xu X X, Xie T, Wu Y C and Zhang L D 2004 J. Phys.: Condens. Matter 16 4157

    CAS  Google Scholar 

  24. Kurien S, Mathew J, Sebastian S, Potty S N and George K C 2006 Mater. Chem. Phys. 98 470

    Article  CAS  Google Scholar 

  25. Kim S E, Lim J H, Lee S C, Nam S C and Kang Choi H G 2008 J. Electrochim. Acta 53 4846

    Article  CAS  Google Scholar 

  26. Yamauchi Y, Nagaura T, Ishikawa A, Chikyow T and Inoue S 2008 J. Am. Chem. Soc. 130 10165

    Article  CAS  PubMed  Google Scholar 

  27. Yamauchi Y, Ohsuna T and Kuroda K 2006 J. Mater. Chem. 16 3091

    Article  Google Scholar 

  28. Malgras V, Henzie J, Takei T and Yamauchi Y 2018 Angew. Chem. Int. Ed. Engl. 57 8881

    Article  CAS  PubMed  Google Scholar 

  29. Chakravarty R, Shukla R, Ramu R, Venkatesh M, Tyagi A K and Dash A 2011 Anal. Chem. 83 6342

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Liang H, Chen Q and Shen X 2013 J. Radioanal. Nucl. Chem. 298 1705

    Article  CAS  Google Scholar 

  31. Chen M, Liu T, Zhang X, Zhang R, Tang S, Yuan Y et al 2021 Adv. Funct. Mater. 31 2100106

    Article  CAS  Google Scholar 

  32. Ramachandhran V, Kumar S C and Sudarsanan M 2001 J. Macromol. Sci. A 38 1151

    Article  Google Scholar 

  33. Yu J, Yu C, Zhu W, He G, Wei Y and Zhou J 2022 Chemosphere 286 131626

    Article  CAS  PubMed  Google Scholar 

  34. Wang D, Liu Z, Yue Y, Xu X, Cai D, Han C et al 2021 Mater. Today Energy 21 100735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Bhabha Atomic Research Centre, Department of Atomic Energy and Government of India, for funding and associated infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K TYAGI.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHARWANDIKAR, B.K., SINGH, K.K. & TYAGI, A.K. Synthesis and characterization of nanostructured mesoporous alumina embedded PES beads for uranium extraction from aqueous radioactive waste. Bull Mater Sci 47, 79 (2024). https://doi.org/10.1007/s12034-024-03202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03202-7

Keywords

Navigation