Skip to main content
Log in

Structural and vibrational properties of (Gd0.7Lu0.3)3Al5O12 cubic garnet synthesized with different aluminium sources via co-precipitation method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Gadolinium aluminium garnet (Gd3Al5O12) nanopowders, with 30 at% lutetium substitution have been successfully synthesized using the co-precipitation method. Several sources, such as aluminium nitrate or sulphate, have been used to develop the (Gd0.7Lu0.3)3Al5O12 (GdLuAG) compound via normal and reverse add titration using ammonium hydrogen carbonate (AHC) as a precipitant. Different techniques such as X-ray diffraction, FTIR, Raman scattering, BET and SEM/EDS analysis were performed in this study. The X-ray results confirmed that the garnet compound crystallized in the cubic structure with group space Ia \(\bar{3}\) d. The crystallite sizes of the powders were determined by using Rietveld refinement analyses. The FTIR results of vibrational characteristics exhibit the internal and external bonds of GdLuAG. The He–Ne laser 633 nm Raman spectra showed a response in the second phonon region exhibiting strong fluorescence in the near-infrared (NIR). The GdLuAG internal Raman active mode in the visible range and excited by a 785 nm diode laser were measured. The X-ray, BET and SEM results indicated that aluminium nitrate reverse titration compound calcined at 1150°C is the best homogeneous and uniform sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cockayne B 1985 J. Less-Common Met. 114 199

    Article  CAS  Google Scholar 

  2. Geusic J E, Marcos H M and Van Uitert L G 1964 Appl. Phys. Lett. 4 182

    Article  CAS  Google Scholar 

  3. De G and van Dijk H J A 1984 Mater. Res. Bull. 19 1669

    Article  Google Scholar 

  4. Dubinskii M, Merkle L D, Goff J R, Quarles G J, Castillo V K, Schepler K L et al 2005 SPIE 5792 1

    CAS  Google Scholar 

  5. Li J G and Sakka Y 2015 Sci. Technol. Adv. Mater. 16 014902

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li J, Li J G, Zhang Z, Wu X, Liu S, Li X et al 2012 J. Am. Ceram. Soc. 95 931

    Article  CAS  Google Scholar 

  7. Lanez I, Rekik B, Derbal M and Chaib A 2019 Fundam. Appl. Sci. 11 857

    CAS  Google Scholar 

  8. Sim S M, Keller K A and Mah T I 2000 J. Mater. Sci. 35 713

    Article  CAS  Google Scholar 

  9. Palmero P and Traverso R 2014 Materials 7 7145

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marlot C, Barraud E, Le S and Eichhorn M 2012 J. Solid State Chem. 191 114

    Article  CAS  Google Scholar 

  11. Apte P, Burke H and Pickup H 1992 J. Mater. Res. 7 706

    Article  CAS  Google Scholar 

  12. Chiang C C, Tsai M S, Hsiao C S and Hon M H 2006 J. Alloys Compd. 416 265

    Article  CAS  Google Scholar 

  13. Meidan Q U, Wenxiu Q U, Ting Z, Jinyou S and Lingbing K O 2017 J. Rare Earths 35 217

    Article  Google Scholar 

  14. Li J-G, Ikegami T, Lee J H and Mori T 2000 J. Mater. Res. 15 2375

    Article  CAS  Google Scholar 

  15. Li J G, Ikegami T, Lee J H, Mori T and Yajima Y 2000 J. Eur. Ceram. Soc. 20 2395

    Article  CAS  Google Scholar 

  16. Zhang Y and Yu H 2009 Ceram. Int. 35 2077

    Article  CAS  Google Scholar 

  17. Sang Y, Liu H, Sun X, Zhang X, Qin H, Lv Y et al 2011 J. Alloys Compd. 509 2407

    Article  CAS  Google Scholar 

  18. Andrade A B, Ferreira N S and Valerio M E 2017 RSC Adv. 7 26839

    Article  CAS  Google Scholar 

  19. Amutha T, Rameshbabu M, Muthupandi S and Prabha K 2021 Mater. Today Proc. 49 2624

    Article  Google Scholar 

  20. Li J, Li J G, Li J, Liu S, Li X, Sun X et al 2013 J. Solid State Chem. 206 104

    Article  CAS  Google Scholar 

  21. Verma A, Nath M, Malhan N and Ganguli A K 2013 Mater. Lett. 93 21

    Article  CAS  Google Scholar 

  22. Li J G, Li J, Zhu Q, Wang X, Li X, Sun X et al 2015 RSC Adv. 5 59686

    Article  CAS  Google Scholar 

  23. Ji X, Deng J, Kang B, Huang H, Wang X, Jing W et al 2013 J. Anal. Appl. Pyrolysis 104 361

    Article  CAS  Google Scholar 

  24. Hao M M, Zeng Z Q, Fan G F, Wang X H, Lu W Z and Liang F 2018 Solid State Phenom. 281 3

    Article  Google Scholar 

  25. Zaidi L, Boukerika A, Larbah Y, Benharrat L, Hammoum K and Selmi N 2022 Mater. Chem. Phys. 286 126182

    Article  CAS  Google Scholar 

  26. Silveira W S, Nascimento P A, Silva A J and Rezende M V 2020 J. Alloys Compd. 822 153651

    Article  CAS  Google Scholar 

  27. Chaika M, Tomala R, Bezkrovnyi O and Strek W 2023 Mater. Res. Bull. 163 112201

    Article  CAS  Google Scholar 

  28. Kumar P, Singh S, Gupta I, Nehra K, Kumar V and Singh D 2022 J. Lumin. 252 119338

    Article  CAS  Google Scholar 

  29. Kumar P, Singh S, Gupta I, Nehra K, Kumar V and Singh D 2022 Mater. Chem. Phys. 295 127035

    Article  Google Scholar 

  30. Kumar P, Singh S, Gupta I, Hooda A, Kumar V and Singh D 2023 J. Mol. Struct. 1271 134074

    Article  CAS  Google Scholar 

  31. Li J, Li J G, Li X and Sun X 2016 J. Alloys Compd. 670 161

    Article  CAS  Google Scholar 

  32. Papagelis K and Ves S 2003 J. Appl. Phys. 94 6491

    Article  CAS  Google Scholar 

  33. Jung K Y and Kang Y C 2010 Phys. B Condens. Matter 405 1615

    Article  CAS  Google Scholar 

  34. Li Q, Gao L and Yan D 2000 Mater. Chem. Phys. 64 41

    Article  Google Scholar 

  35. Yuan F and Ryu H 2004 Mater. Sci. Eng. 107 14

    Article  Google Scholar 

  36. Papagelis K, Arvanitidis J, Kanellis G, Ves S and Kourouklis G A 2002 J. Phys. Condens. Matter 14 3875

    Article  CAS  Google Scholar 

  37. Hassanzadeh-Tabrizi S A, Taheri-Nassaj E and Sarpoolaky H 2008 J. Alloys Compd. 456 282

    Article  CAS  Google Scholar 

  38. Boyer D, Bertrand-Chadeyron G and Mahiou R 2004 Opt. Mater. 26 101

    Article  CAS  Google Scholar 

  39. Li J K, Li J G, Wu X L, Liu S H, Li X D and Sun X D 2013 Key Eng. Mater. 544 245

    Article  Google Scholar 

  40. Sonkusare V N, Chaudhary R G, Bhusari G S, Rai A R and Juneja H D 2018 Nano-Struct. Nano-Objects 13 21

    Article  Google Scholar 

  41. Jiang K M, Luesakul U, Zhao S Y, An K, Muangsin N, Neamati N et al 2017 ACS Omega 2 3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sonkusare V N, Chaudhary R G, Bhusari G S, Mondal A, Potbhare A K and Mishra R K 2020 ACS omega 14 7823

    Article  Google Scholar 

  43. Boukerika A, Guerbous L and Brihi N 2014 J. Alloys Compd. 614 383

    Article  CAS  Google Scholar 

  44. Papagelis K, Kanellis G, Arvanitidis J, Kourouklis G A and Ves S 1999 Phys. Stat. Sol. (b) 215 193

    Article  CAS  Google Scholar 

  45. Ves S, Papagelis K, Arvanitidis J, Christofilos D and Kourouklis G A 2004 XVI Natl. Symp. Condens. Matter Phys. 288

  46. Papagelis K and Ves S 2003 J. Phys. Chem. Sol. 64 599

    Article  CAS  Google Scholar 

  47. Hrabovský J, Kučera M, Paloušová L, Bi L and Veis M 2021 Opt. Mater. 11 1218

    Article  Google Scholar 

  48. Papagelis K, Kanellis G, Ves S and Kourouklis G A 2002 Phys. Stat. Sol. (b) 233 134

    Article  CAS  Google Scholar 

  49. Slack G A, Oliver D W, Chrenko R M and Roberts S 1969 Phys. Rev. 177 1308

    Article  CAS  Google Scholar 

  50. Middleton R C, Muthu D V and Kruger M B 2008 Solid State Commun. 148 310

    Article  CAS  Google Scholar 

  51. Lanez I, Rekik B and Derbal M 2018 DSpace http://dspace.univ-eloued.dz/handle/123456789/2399

  52. Mironova-Ulmane N, Sildos I, Vasil’chenko E, Chikvaidze G, Skvortsova V, Kareiva A et al 2018 Nucl. Instr. Meth. Phys. Res. 435 306

    Article  CAS  Google Scholar 

  53. Praveena R, Balasubrahmanyam K, Jyothi L, Venkataiah G, Basavapoornima C and Jayasankar C K 2016 J. Lumin. 170 262

    Article  CAS  Google Scholar 

  54. Cebeci-Maltaş D, Alam M A, Wang P and Ben-Amotz D 2017 Eur. Pharm. Rev. 22 18

    Google Scholar 

  55. Moody A S 2018 Trace Tennessee Research and Creative Exchange https://trace.tennessee.edu/utk_graddiss/5221

  56. Karlsson H and Illy E 2018 Laser Focus World https://www.laserfocusworld.com/lasers-sources/article/16555207/how-to-choose-a-laser-how-to-choose-a-laser-for-raman-spectroscopy

  57. Park K, Kim T, Yu Y, Seo K and Kim H 2016 J. Lumin. 173 159

    Article  CAS  Google Scholar 

  58. Niedźwiedzki T, Ryba-Romanowski W, Komar J, Głowacki M and Berkowski M 2016 J. Lumin. 177 219

    Article  Google Scholar 

  59. Zhou P and Tek W 2015 BWTEK 1 1

    Google Scholar 

  60. WP-AN 2019 Extending-Reach-Portable-Raman https://wasatchphotonics.com/technologies/raman-spectroscopy-wavelength-matters/

  61. Hertle E, Chepyga L, Osvet A, Brabec C J, Batentschuk M, Will S et al 2019 Meas. Sci. Technol. 30 034001

    Article  CAS  Google Scholar 

  62. Feng Y, Xie T, Chen X, Toci G, Pirri A, Patrizi B et al 2020 Opt. Mater. 110 110478

    Article  CAS  Google Scholar 

  63. Li J, Li J G, Liu S, Li X, Sun X and Sakka Y 2013 Sci. Technol. Adv. Mater. 14 054201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hao M M, Zeng Z Q, Fan G F, Wang X H, Lu W Z and Liang F 2018 Solid State Phenomena 281 3

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the General Directorate of Scientific Research and Technological Development (DGRSDT) for their financial support, to make the physical and chemical analyses possible. We also acknowledge researchers in the Laboratory of Physical-Chemical Inorganics Materials and their Applications (LPCMIA), Blida 1, University Algeria. Gratitude is expressed to Mr Touhami LANEZ, the director of valorization and technology of Sahara Resources (VTRS), Laboratory at Echahid Hamma Lakhder University in El-Oued, Algeria. Gratitude is extended to Mr. Khierreddine LEBBOU, CNRS research director and the director of Saphir Lab Laboratory in ILM institute at Claude Bernard University, Lyon1, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Lanez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanez, I., Rekik, B., Kezzim, A. et al. Structural and vibrational properties of (Gd0.7Lu0.3)3Al5O12 cubic garnet synthesized with different aluminium sources via co-precipitation method. Bull Mater Sci 47, 113 (2024). https://doi.org/10.1007/s12034-024-03194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03194-4

Keywords

Navigation