Skip to main content
Log in

Comparative study of supercapacitive behaviour of vanadium oxide nanoflakes deposited hydrothermally on stainless steel mesh

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Vanadium oxides are anticipated to be high-performance energy storage electrodes due to their connected double layer and pseudo-capacitive charge storage mechanism. In the current work, flexible stainless-steel mesh substrates are created using a straightforward hydrothermal approach resulting net-like linked nanoflakes and microflowers. There are more electrochemically active sites for energy storage due to its large surface area. Stainless-steel mesh substrates themselves provide porous structure for charge transfer. Morphological results of SEM show porous nanoflake-like structures grown on the substrate. Phase is confirmed using XRD studies. It shows the specific capacitance of 675.66 F g−1 and 343.33 Wh g−1 of energy density at 0.002 A g−1 current density and power density of 19,000 W g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Simon P and Gogotsi Y 2008 Nat. Mater. 7 845

    Article  CAS  PubMed  Google Scholar 

  2. Stoller M D and Ruoff R S 2010 Energy Environ. Sci. 3 1294

    Article  CAS  Google Scholar 

  3. Tarascon J M and Armand M 2001 Nature 414 359

    Article  CAS  PubMed  Google Scholar 

  4. Winter M and Brodd R J 2004 Chem. Rev. 104 4245

    Article  CAS  PubMed  Google Scholar 

  5. Pumera M 2011 Energy Environ. Sci. 4 668

    Article  CAS  Google Scholar 

  6. Guo S and Dong S 2011 Chem. Soc. Rev. 40 2644

    Article  CAS  PubMed  Google Scholar 

  7. Yang Z, Zhang J, Kintener-Meyer M C W, Lu X, Choi D, Lemmon J P et al 2011 Chem. Rev. 111 3577

    Article  CAS  PubMed  Google Scholar 

  8. Sun H, Zhang Y, Zhang J, Sun X and Peng H 2017 Nat. Rev. Mater. 2 1

    Article  Google Scholar 

  9. Beidaghi M and Gogotsi Y 2014 Energy Environ. Sci. 7 867

    Article  CAS  Google Scholar 

  10. Liu Z, Xu J, Chen D and Shen G 2015 Chem. Soc. Rev. 44 1

    Article  Google Scholar 

  11. Kyeremateng N A, Brousse T and Pech D 2017 Nat. Nanotechnol. 12 7

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Lou Z, Chen S, Chen D, Wang Z M, Jiang K et al 2017 Nano Energy 35 121

    Article  Google Scholar 

  13. He H, Fu Y, Zhao T, Gao X, Xing L, Zhang Y et al 2017 Nano Energy 39 590

    Article  CAS  Google Scholar 

  14. Peng X, Peng L, Wu C and Xie Y 2014 Chem. Soc. Rev. 43 3303

    Article  CAS  PubMed  Google Scholar 

  15. Pech D, Brunet M, Durou Huang P, Mochalin Gogotsi Y et al 2010 Nat. Nanotechnol. 5 651

    Article  CAS  PubMed  Google Scholar 

  16. Wang J G, Yang Y, Huang Z H and Kang F 2013 Carbon NY 61 190

    Article  CAS  Google Scholar 

  17. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C et al 2015 Science 347 1246501

    Article  PubMed  Google Scholar 

  18. Wang Y, Guo J, Wang T, Shao J, Wang D and Yang Y W 2015 Nanomaterials 5 1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou M, Gomez J, Li B, Jiang Y B and Deng S 2017 Appl. Mater. Today 7 47

    Article  Google Scholar 

  20. Zhang X, Sun X, Zhang H, Zhang D and Ma Y 2012 Mater. Chem. Phys. 135 137

    Article  CAS  Google Scholar 

  21. Tao F, Shen Y, Liang Y and Li H 2007 J. Solid State Electrochem. 11 853

    Article  CAS  Google Scholar 

  22. Seo M K and Park S J 2010 Curr. Appl. Phys. 10 391

    Article  Google Scholar 

  23. Lutta S T, Dobley A, Ngala K, Yang S, Zavalij P Y and Whittingham M S 2011 MRS Online Proc. Libr. 703 83

    Article  Google Scholar 

  24. Yuan G, Jiang Z, Aramata A and Gao Y 2005 Carbon NY 43 14

    Article  Google Scholar 

  25. Huang Q, Wang X, Li J, Dai C, Gamboa S and Sebastian P J 2007 J. Power Sources 164 1

    Article  Google Scholar 

  26. Boukhalfa S, Evanoff K and Yushin G 2012 Energy Environ. Sci. 5 6872

    Article  CAS  Google Scholar 

  27. Li M, Sun G, Yin P, Ruan C and Ai K 2013 ACS Appl. Mater. Interfaces 5 11462

    Article  CAS  PubMed  Google Scholar 

  28. Chou S L, Wang J Z, Liu H K and Dou S X 2008 J. Electrochem. Soc. 155 A926

    Article  CAS  Google Scholar 

  29. Pandit B, Dubal D P, Gómez-Romero P, Kale B B and Sankapal B R 2017 Sci. Rep. 7 43430

    Article  PubMed  PubMed Central  Google Scholar 

  30. Béguin F, Presser V, Balducci A and Frackowiak E 2014 Adv. Mater. 26 2219

    Article  PubMed  Google Scholar 

  31. Kang D, Liu Q, Gu J, Su Y, Zhang W and Zhang D 2015 ACS Nano 9 11225

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Zheng J, Zhao Y, Hu T, Gao Z and Meng C 2016 Appl. Surf. Sci. 377 385

    Article  CAS  Google Scholar 

  33. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F et al 2009 Carbon NY 47 3371

    Article  CAS  Google Scholar 

  34. Khomenko V, Frackowiak E and Béguin F 2004 Electrochim. Acta 50 2499

    Article  Google Scholar 

  35. Chu J, Kong Z, Lu D, Zhang W, Wang X, Yu Y et al 2016 Mater. Lett. 166 179

    Article  CAS  Google Scholar 

  36. Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W et al 2015 Ceram. Int. 41 12626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of instruments at the Department of Physics, Sanjay Ghodawat University, Atigre. AY would like to thank the Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARATHI) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita P Patil.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.D., Patil, R.B., Gurav, R. et al. Comparative study of supercapacitive behaviour of vanadium oxide nanoflakes deposited hydrothermally on stainless steel mesh. Bull Mater Sci 47, 82 (2024). https://doi.org/10.1007/s12034-024-03174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03174-8

Keywords

Navigation