Skip to main content
Log in

Highly conductive multiscale fibre-engineered biomedical patch prepared by electrospinning substrate and in-situ polymerization

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is one of the major diseases that threaten human life and health. The construction of cardiac patch by tissue engineering method and biomaterials is a promising way to treat MI clinically by improving electromechanical signal transduction in MI area. A highly conductive electrospun fibre-engineered biomedical patch with porous structure, mechanical support and conductive property was prepared by poly(lactic-co-glycolic acid) (PLGA), polyaniline (PANI), graphene oxide (GO) and multi-walled carbon nanotubes (MWCNT). PLGA, PLGA/MWCNT, PLGA/GO electrospinning fibre membrane substrates were prepared first and then in-situ polymerization of aniline (ANI) to form PANI/PLGA and PANI/PLGA/MWCNT fibre conductive patches. PLGA-blended fibre patch had a smooth fibre surface and an uniform fibre diameter, porous structure, fibre parallel arrangement, in which PLGA/MWCNT had larger ultimate strength and Young’s modulus. When the ANI concentration was 0.4 mol l−1, electrical conductivity reached the maximum value, and the electrical conductivity of PANI/PLGA fibre patch was significantly larger than that of PANI/PLGA/MWCNT fibre patch as the ANI concentration increased, which were 1.56 × 10−2 and 6.06 × 10−3 S cm−1, respectively. Highly conductive fibre membrane-engineered biomedical patch had excellent electrical and thermal stability, and improved signal transduction, with porous structure and mechanical support for potential MI repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Mc Namara K, Alzubaidi H and Jackson J K 2019 Integr. Pharm. Res. Pra. 8 1

    Article  Google Scholar 

  2. Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N et al 2020 Adv. Health. Mater. 9 2000735

    Article  CAS  Google Scholar 

  3. Wu Y, Chang T, Chen W, Wang X, Li J, Chen Y et al 2021 Bioact. Mater. 6 520

    CAS  PubMed  Google Scholar 

  4. Ruvinov E and Cohen S 2016 Adv. Drug Deliver. Rev. 96 54

    Article  CAS  Google Scholar 

  5. Prabhu S D and Frangogiannis N G 2016 Circ. Res. 119 91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamdi H, Boitard S E, Planat-Benard V, Pouly J, Neamatalla H, Joanne P et al 2013 Cardiovasc. Res. 99 640

    Article  CAS  PubMed  Google Scholar 

  7. Roche E T, Hastings C L, Lewin S A, Shvartsman D E, Brudno Y, Vasilyev N V et al 2014 Biomaterials 35 6850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stevens K R, Kreutziger K L, Dupras S K, Korte F S, Regnier M, Muskheli V et al 2009 Proc. Natl. Acad. Sci. USA 106 16568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akiyama H, Ito A, Sato M, Kawabe Y and Kamihira M 2010 Int. J. Mol. Sci. 11 2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin S R, Aghaei-Ghareh-Bolagh B, Gao X, Nikkhah M, Jung S M, Dolatshahi-Pirouz A et al 2014 Adv. Funct. Mater. 24 6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang M-C, Wang S-S, Chou N-K, Chi N-H, Huang Y-Y, Chang Y-L et al 2009 Biomaterials 30 3757

    Article  CAS  PubMed  Google Scholar 

  12. Piao H, Kwon J-S, Piao S, Sohn J-H, Lee Y-S, Bae J-W et al 2007 Biomaterials 28 641

    Article  CAS  PubMed  Google Scholar 

  13. Dvir T, Timko B P, Kohane D S and Langer R 2011 Nat. Nanotechnol. 6 13

    Article  CAS  PubMed  Google Scholar 

  14. Siepe M, Giraud M-N, Liljensten E, Nydegger U, Menasche P, Carrel T et al 2007 Artif. Organs 31 425

    Article  CAS  PubMed  Google Scholar 

  15. Wickham A M, Islam M M, Mondal D, Phopase J, Sadhu V, Tamas E et al 2014 J. Biomed. Mater. Res. B 102 1553

    Article  Google Scholar 

  16. Wei H-J, Chen C-H, Lee W-Y, Chiu I, Hwang S-M, Lin W-W et al 2008 Biomaterials 29 3547

    Article  CAS  PubMed  Google Scholar 

  17. Lin Y-D, Ko M-C, Wu S-T, Li S-F, Hu J-F, Lai Y-J et al 2014 Biomater. Sci-UK 2 567

    Article  CAS  Google Scholar 

  18. Cirillo V, Clements B A, Guarino V, Bushman J, Kohn J and Ambrosio L 2014 Biomaterials 35 8970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hasan A, Waters R, Roula B, Dana R, Yara S, Alexandre T et al 2016 Macromol. Biosci. 16 958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krziminski C, Kammann S, Hansmann J, Edenhofer F, Dandekar G, Walles H et al 2020 J. Tissue Eng. Regen. M 14 1749

    Article  CAS  Google Scholar 

  21. Lozano O, Torres-Quintanilla A and Garcia-Rivas G 2018 J. Control. Release 271 149

    Article  CAS  PubMed  Google Scholar 

  22. Talebi A, Labbaf S, Karimzadeh F, Masaeli E and Esfahani M-HN 2020 ACS Biomater. Sci. Eng. 6 4214

    Article  CAS  PubMed  Google Scholar 

  23. Davidenko N, Gibb T, Schuster C, Best S M, Campbell J J, Watson C J et al 2012 Acta Biomater. 8 667

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Shu Y, Hao T, Wang Y, Qian Y, Duan C et al 2013 Biomaterials 34 9071

    Article  CAS  PubMed  Google Scholar 

  25. Xie S, Zhu Q, Wang B, Gu H, Liu W, Cui L et al 2010 Biomaterials 31 5100

    Article  CAS  PubMed  Google Scholar 

  26. Roman J A, Niedzielko T L, Haddon R C, Parpura V and Floyd C L 2011 J. Neurotraum. 28 2349

    Article  Google Scholar 

  27. Shao W, He J, Wang Q, Cui S and Ding B 2017 ACS Biomater. Sci. Eng. 3 1370

    Article  CAS  PubMed  Google Scholar 

  28. Ege D, Kamali A R and Boccaccini A R 2017 Adv. Eng. Mater. 19 1700627

    Article  Google Scholar 

  29. Fu C, Bai H, Zhu J, Niu Z, Wang Y, Li J et al 2017 Plos One 12 e0188352

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang S, Liu H, Tang N, Ali N, Yu J and Ding B 2019 ACS Nano 13 13501

    Article  CAS  PubMed  Google Scholar 

  31. Mahmoudian M, Khazani Y, Gozali Balkanloo P and Enayati M 2021 Polym. Bull. 78 4313

    Article  CAS  Google Scholar 

  32. Ghosh T, Basak U, Bairi P, Ghosh R, Pakhira M, Ball R et al 2020 ACS Appl. Nano Mater. 3 1693

    Article  CAS  Google Scholar 

  33. Ciric-Marjanovic G 2013 Synth. Met. 177 1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Natural Science Foundation of China, under Grant No. LY20E030004, and the Fundamental Research Funds of the Zhejiang Sci-Tech University, under Grant No. 23202132-Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Feng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Lin, Q., Wang, W. et al. Highly conductive multiscale fibre-engineered biomedical patch prepared by electrospinning substrate and in-situ polymerization. Bull Mater Sci 47, 101 (2024). https://doi.org/10.1007/s12034-024-03155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03155-x

Keywords

Navigation