Skip to main content
Log in

Regeneration of alkali metal K deactivation in low-temperature manganese-based SCR catalyst

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Based on the MnOx/TiO2 catalyst prepared by the sol–gel method as the substrate, the impregnation method was used to simulate the deactivation process of the alkali metal K of the MnOx/TiO2 catalyst, and the regeneration experiment of the deactivated K–MnOx/TiO2 catalyst was carried out by water washing and acid washing. The effects of methods and process conditions on the regeneration effect of deactivated catalysts were discussed emphatically. The results show that the regeneration effect of acid washing on the deactivated catalyst is obviously better than that of water washing. Under the conditions of ultrasonic frequency of 30 kHz, HNO3 concentration of 0.3 mol l–1, acid washing for 45 min and calcination at 400°C for 4 h, the removal rate of NO by the catalyst can be recovered from 35 to 89%. Using Brunauer–Emmett–Teller and Barren–Johner–Halendar analysis, X-ray fluorescence analysis, and NH3 temperature-programmed desorption analysis, it was found that acid washing can better restore the specific surface area and surface acid content of the deactivated catalyst, and has a strong ability to remove alkali metal K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Liu C, Shi J, Gao C and Niu C 2016 Appl. Catal. A-Gen. 522 54

    Article  CAS  Google Scholar 

  2. Tang C, Zhang H and Dong L 2016 Catal. Sci. Technol. 6 1248

    CAS  Google Scholar 

  3. Liu X, Tan H, Wang Y, Yang F, Mikulcic H, Vujanovic M et al 2018 J. Environ. Manage. 220 30

    Article  CAS  PubMed  Google Scholar 

  4. Park J H, Ahn J W, Kim K H and Son Y S 2019 Chem. Eng. J. 355 351

    Article  CAS  Google Scholar 

  5. Han L, Cai S, Gao M, Hasegawa J, Wang P, Zhang J et al 2019 Chem. Rev. 119 10916

    Article  CAS  PubMed  Google Scholar 

  6. Qi K, Xie J, Zhang Z, Fang D, Han D, Liu X et al 2018 Powder Technol. 338 774

    Article  CAS  Google Scholar 

  7. Dong G, Li Y, Wang Y, Zhang J and Duan R 2014 React. Kinet. Mech. Cat. 111 235

    Article  CAS  Google Scholar 

  8. Gao F, Chu C, Zhu W, Tang X, Yi H and Zhang R 2019 Appl. Surf. Sci. 479 548

    Article  CAS  Google Scholar 

  9. Kapteijn F, Singoredjo L, Andreini A and Moulijn Ja 1994 Appl. Catal. B-Environ. 3 173

  10. Fang D, He F and Xie J 2019 J. Energy Inst. 92 319

    Article  CAS  Google Scholar 

  11. Liu Y, Gu T, Wang Y, Weng X and Wu Z 2012 Catal. Commun. 18 106

    Article  Google Scholar 

  12. Cimino S, Totarella G and Tortorelli M 2017 Chem. Eng. J. 330 92

    Article  CAS  Google Scholar 

  13. Jiang Y, Gao X, Zhang Y, Wu W, Luo Z and Cen K 2014 Environ. Prog. Sustain. 33 390

    Article  CAS  Google Scholar 

  14. Guo R, Wang S, Pan W, Li M, Sun P, Liu S et al 2017 J. Phys. Chem. C 121 7881

    Article  CAS  Google Scholar 

  15. Fang D, Xie J, Hu H, Zhang Z, He F, Zheng Y et al 2015 Fuel Process. Technol. 134 465

    Article  CAS  Google Scholar 

  16. Negreira A and Wilcox J 2013 J. Phys. Chem. C 117 1761

    Article  Google Scholar 

  17. Roy S, Viswanath B, Hegde M S and Madras G 2008 J. Phys. Chem. C 112 6002

    Article  CAS  Google Scholar 

  18. Chen Q, Guo R, Wang Q, Pan W, Yang N, Lu C et al 2016 J. Taiwan Inst. Chem. E 64 116

    Article  CAS  Google Scholar 

  19. Kim Y, Kwon H, Nam I, Choung J, Kil H, Cha M et al 2010 Catal. Today 151 244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC 21676145), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Gui.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Zhu, S. & Gui, X. Regeneration of alkali metal K deactivation in low-temperature manganese-based SCR catalyst. Bull Mater Sci 47, 100 (2024). https://doi.org/10.1007/s12034-024-03151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03151-1

Keywords

Navigation