Skip to main content
Log in

Effect of Nd doping on Curie temperature of nonstoichiometric lithium tantalate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The Curie temperature of lithium tantalate \({T}_{{\text{c}}}\) is influenced by the substitution of elements in the structure lattice. From the experience, the experimental results of Curie temperatures of a series of Congruent 0.2 and 0.5 mol% Nd-doped \({{\text{LiTaO}}}_{3}\) (LT) single crystals are well reproduced theoretically by combining Maaider et al new approach of ferroelectric transition with our proposed vacancy model. The substitution mechanism of Nd-doped lithium tantalate crystal is discussed in the context of the obtained chemical formulas and variation of Curie temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2

Similar content being viewed by others

References

  1. Askin A, Boyd G D, Dziedzic J M, Smith R G, Ballman A A, Levinstein J J et al 1966 Appl. Phys. Lett. 9 72

    Article  Google Scholar 

  2. Denton R T, Chen F S and Ballman A A 1967 J. Appl. Phys. 38 1611

    Article  CAS  Google Scholar 

  3. Huband S, Keeble D S, Zhang N, Glazer A M, Bartasyte A and Thomas P A 2017 J. Appl. Phys. 121 24102

    Article  Google Scholar 

  4. Ravez J and Micheron F 1979 L’Actualité Chim. 1 9

    Google Scholar 

  5. Barns R L and Carruthers J R 1970 J. Appl. Cryst. 3 395

    Article  CAS  Google Scholar 

  6. Abrahams S C and Bernstein J L 1967 J. Phys. Chem. Solids 28 1685

    Article  CAS  Google Scholar 

  7. Abrahams S C, Hamilton W C and Sequeira A 1967 J. Phys. Chem. Solids 28 1693

    Article  CAS  Google Scholar 

  8. Thiemann O, Donnerberg H, Wohlecke M and Schirmer O F 1994 Phys. Rev. B 49 5845

    Article  CAS  Google Scholar 

  9. Cheng S D, Kam C H and Buddhudu S 2002 J. Mater. Sci. Lett. 21 93

    CAS  Google Scholar 

  10. Hu P C, Hang Y, Li R, Gong J, Yin J G, Zhao C C et al 2011 Laser Phys. Lett. 8 710

    Article  CAS  Google Scholar 

  11. Bhaumik I, Ganesamoorthy S, Bhatt R, Karnal A K, Wadhawan V K, Gupta P K et al 2008 J. Appl. Phys. 103 074106

    Article  Google Scholar 

  12. Wu X L, Zhang Z Q, Hu A, Zhang M S, Jiang S S and Feng D 1995 Appl. Phys. Lett. 67 2450

    Article  CAS  Google Scholar 

  13. Kaczmarek S M, Swirkowicz M, Jablonski R, Lukasiewicz T and Kwasny M 2000 J. Alloys Compd. 300–301 322

    Article  Google Scholar 

  14. Wu C C, Hsu W T, Chen Z B, Choubey R K and Lan C W 2011 J. Cryst. Growth 318 649

    Article  CAS  Google Scholar 

  15. He C, Li W, Wang J, Gu X, Wu T and Liu Y 2018 Acta Optica Sinica 38 0116003

    Article  Google Scholar 

  16. Maaider K, Jennane A, Masaif N and Khalil A 2011 J. Mod. Phys. 2 1093

    Article  Google Scholar 

  17. Safaryan F P 1999 Phys. Lett. A 191 255

    Google Scholar 

  18. Iyi N, Kitamura K, Izumi F, Yamamoto J K, Hayashi T, Asano H et al 1992 J. Solid. State Chem. 101 340

    Article  CAS  Google Scholar 

  19. Safaryan F P, Feigelson R S and Petrosyan A M 1999 J. Appl. Phys. 85 8079

    Article  CAS  Google Scholar 

  20. Masaif N, Jebbari S, Bennani F, Hafid M and Jenanane A 2003 Phys. Status Solidi B 240 1

    Article  Google Scholar 

  21. Lines M E and Glass A M 1977 Principles and application of ferroelectrics and related materials (Oxford: Clarendon Press)

    Google Scholar 

  22. Palatnikov M N, Biryukova I V, Sidorov N V, Denisov A V, Kalinnikov V T, Smith P G R et al 2006 J. Cryst. Growth 291 390

    Article  CAS  Google Scholar 

  23. Katsumata T, Shibata K and Imagawa H 1994 Mater. Res. Bull. 29 559

    Article  CAS  Google Scholar 

  24. Yamada T, Niizeki N and Toyoda H 1968 Jpn. J. App. Phys. 7 298

    Article  CAS  Google Scholar 

  25. Kim Y S and Smith R T 1969 J. Appl. Phys. 40 4637

    Article  CAS  Google Scholar 

  26. Abrahams S C, Buehler E, Hamilton W C and Laplaca S J 1973 J. Phys. Chem. Solids 34 521

    Article  CAS  Google Scholar 

  27. Nakamura M, Takekawa S, Liu Y and Kitamura K 2009 J. Cryst. Growth 311 272

    Article  CAS  Google Scholar 

  28. Gorelik V S, Sidorov N V and Vodchits A I 2017 Phys. Wave Phenom. 25 10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Hboub.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hboub, H., Fadlaoui, E. & Masaif, N. Effect of Nd doping on Curie temperature of nonstoichiometric lithium tantalate. Bull Mater Sci 47, 90 (2024). https://doi.org/10.1007/s12034-024-03147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03147-x

Keywords

Navigation