Skip to main content
Log in

Effects of Cd addition to NiTi shape memory alloys on thermal, mechanical and corrosion behaviour

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, it is aimed to investigate the effects of NiTiCd alloy, which is formed by adding Cd element to NiTi shape memory alloys, on some physical and chemical parameters. The chemical compositions (% atomic) of the produced alloys were prepared as Ni48Ti50Cd2 and Ni46Ti50Cd4. Some thermodynamic parameters of these samples were investigated by DSC, structural analysis by SEM-EDX and XRD, hardness by Vickers microhardness method and corrosion behaviour by electrochemical method. The thermal activation energy required for phase transformations of alloys was calculated using the Kissinger and Ozawa methods. The average thermal activation energies obtained from the two methods are 85.76 kJ mol–1 for Ni48Ti50Cd2 SMA and 106.93 kJ mol–1 for Ni46Ti50Cd4 SMA. The XRD and SEM-EDX analyses indicated that the Ti element was the dominant constituent in the precipitate microstructures. It was found that with an increasing amount of cadmium, the microhardness of NiTi alloy decreases. It was calculated that Ni46Ti50Cd4 SMA has the best corrosion resistance compared to Ni48Ti50Cd2 alloys in terms of corrosion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balcı E and Dagdelen F 2022 Iran. J. Sci. Technol. Trans. A-Sci. 46 353

    Article  Google Scholar 

  2. Jhou W-T, Wang C, Li S, Chiang H-S and Hsueh C-H 2018 J. Alloys Compd. 738 336

    Article  CAS  Google Scholar 

  3. Wen C, Yu X, Zeng W, Zhao S, Wang L, Wan G et al 2018 AIMS Mater. Sci. 5 559

    Article  CAS  Google Scholar 

  4. Rodrigue H, Wang W, Han M W, Kim T J and Ahn S-H 2017 Soft Robotics 7 727

    Google Scholar 

  5. Kalra S, Bhattacharya B and Munjal B 2017 Smart Mater. Struct. 26 095015

    Article  ADS  Google Scholar 

  6. Dagdelen F, Balci E, Qader I, Aydogdu Y and Saydam S 2021 Phys. Met. Metallogr. 122 1572

    Article  ADS  CAS  Google Scholar 

  7. Liu J and Guo Y 2015 Proc. Manuf. 1 904

    Google Scholar 

  8. Es-Souni M, Es-Souni M, Brandies F and H, 2005 Anal. Bioanal. Chem. 381 557

    Article  CAS  PubMed  Google Scholar 

  9. Mousavi T, Karimzadeh F and Abbasi M 2008 Mater. Sci. Eng. A 487 46

    Article  Google Scholar 

  10. Ying C, Hai Chang J, Li Jian R, Li X and Xin Qing Z 2011 Intermetallics 19 217

    Article  Google Scholar 

  11. Duerig T and Melton K EDP Sci. 7 191

  12. Ohba T and Otsuka K 1996 MRS Online Proceedings Library 459 295

    Article  Google Scholar 

  13. Murakami Y, Nakajima Y, Otsuka K, Ohba T, Matsuo R and Ohshima K 1997 Mater. Sci. Eng. A 237 87

    Article  Google Scholar 

  14. Bernhoft R A 2013 Sci. World J. 7 2013

    Google Scholar 

  15. Feng R, Wei C, Tu S, Ding Y and Song Z 2013 Biol. Trace Elem. Res. 151 113

    Article  CAS  PubMed  Google Scholar 

  16. Hassanien A S and Akl A A 2016 Superlattice Microst. 89 153

    Article  ADS  CAS  Google Scholar 

  17. Fujii H, Wang Y, Watanabe K, Sugiyama M and Nakano Y 2013 J. Appl. Phys. 114 103101

    Article  ADS  Google Scholar 

  18. Huang C-H, Yang C-H, Shieh Y T and Wang T L 2018 J. Alloys Compd. 748 265

    Article  CAS  Google Scholar 

  19. Hassanien A S, Neffati R and Aly K 2020 Optik 212 164681

    Article  ADS  CAS  Google Scholar 

  20. Klaassen C D, Liu J and Diwan B A 2009 Toxicol. Appl. Pharmacol. 238 215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Genchi G, Sinicropi M S, Lauria G, Carocci A and Catalano A 2020 Int. J. Env. Res. Public Health 17 3782

    Article  CAS  Google Scholar 

  22. Alharthi A, Hamza Z, Elmahdi M, Abuelzahab H and Saleh H 2020 Biol. Trace Elem. Res. 197 619

    Article  CAS  PubMed  Google Scholar 

  23. Organization W H 2019 World Health Organization 9 778

    Google Scholar 

  24. Hayat M T, Nauman M, Nazir N, Ali S and Bangash N 2019 Cadmium Toxic. Tol. Plants 30 71585

    Google Scholar 

  25. Genchi G, Carocci A, Lauria G, Sinicropi M S and Catalano A 2020 Int. J. Environ. Res. Public Health 17 679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balci E, Dagdelen F, Qader I N and Kok M 2021 Eur. Phys. J. Plus. 136 145

    Article  CAS  Google Scholar 

  27. Balci E and Dagdelen F 2022 J. Therm. Anal. Calorim. 46 353

    Google Scholar 

  28. Santosh S and Sampath V 2019 Trans. Indian Inst. Met. 72 1481

    Article  CAS  Google Scholar 

  29. Dagdelen F, Balci E, Qader I N, Ozen E, Kok M, Kanca M S et al 2020 JOM 72 1664

    Article  ADS  CAS  Google Scholar 

  30. Swaminathan G, Sampath V and Adarsh S 2021 Trans. Indian Inst. Met. 74 2435

    Article  CAS  Google Scholar 

  31. Firstov G, Van Humbeeck J and Koval Y N 2006 J. Intell. Mater. Syst. Struct. 17 1041

    Article  CAS  Google Scholar 

  32. Kus K and Breczko T 2010 Mater. Phys. Mech. 9 75

    CAS  Google Scholar 

  33. Dagdelen F and Aydogdu Y 2019 J. Therm. Anal. Calorim. 136 637

    Article  CAS  Google Scholar 

  34. Balci E and Dağdelen F 2021 Int. J. Innov. Eng. Appl. 5 131

    Google Scholar 

  35. Dagdelen F, Balci E and Ercan E 2021 Bitlis Eren Unv. J. Sci. 10 796

    Google Scholar 

  36. Kissinger H E 1957 Anal. Chem. 29 1702

    Article  CAS  Google Scholar 

  37. Ozawa T 1970 J. Therm. Anal. 2 301

    Article  CAS  Google Scholar 

  38. Tillmann W and Momeni S 2015 Sens. Actuators A-Phys. 221 9

    Article  CAS  Google Scholar 

  39. Li B, Rong L and Li Y 1999 Sci. China Ser. E 42 94

    Article  CAS  Google Scholar 

  40. Oshida Y 2007 Biosci. Bioengin. Titanium Mater. 1 3

    Google Scholar 

  41. Dalvand R, Mahmud S and Seeni A 2019 J. Electron. Mater. 48 1604

    Article  ADS  CAS  Google Scholar 

  42. Shi P, Cheng F and Man H C 2007 Mater. Lett. 61 2385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Dagdelen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balci, E., Tatar, C., Tatar, B. et al. Effects of Cd addition to NiTi shape memory alloys on thermal, mechanical and corrosion behaviour. Bull Mater Sci 47, 54 (2024). https://doi.org/10.1007/s12034-023-03121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03121-z

Keywords

Navigation