Skip to main content
Log in

Fabrication of carbon-based, lead-free AgBiI4 Rudorffite solar cell with HCl as an additive

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Over the past few years, hybrid perovskite solar cells (PSCs) have drawn a lot of interest due to their remarkable properties. Nonetheless, the lead toxicity and instability issues make it difficult for PSC to become commercially viable. The less toxic and stable nature of silver bismuth iodide (Ag–Bi–I) makes it a promising material for photovoltaic applications. Nevertheless, almost all these solar cells are constructed with a mesoporous architecture that includes costlier and unstable hole-transport layers (HTLs) in addition to noble metal electrodes. Herein, we fabricate the carbon-based AgBiI4 solar cell without HTL and by introducing HCl acid as an additive, the film quality has been enhanced and the solar cell displays a power conversion efficiency (PCE) of 1.04% and Jsc of 3.91 mA cm−2. It was observed that the quality of the film has been boosted by the utilization of HCl as a chlorine source. Thus, our findings pave the way for the cost-efficient and easy fabrication of lead-free solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Islam M B, Yanagida M, Shirai Y, Nabetani Y and Miyano K 2019 Sol. Energy Mater. Sol. Cells 195 323

    Article  CAS  Google Scholar 

  2. Cao Y, Liu Z, Li W, Zhao Z, Xiao Z, Lei B et al 2021 Sol. Energy 220 251

    Article  ADS  Google Scholar 

  3. Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    Article  CAS  PubMed  Google Scholar 

  4. Wu T, Qin Z, Wang Y, Wu Y, Chen W, Zhang S et al 2021 Nano-Micro Lett. 13 152

    Article  ADS  CAS  Google Scholar 

  5. Wan J, Yu X, Zou J, Li K, Chen L, Peng Y et al 2021 Sol. Energy 226 85

    Article  ADS  CAS  Google Scholar 

  6. Liang L and Gao P 2018 Adv. Sci. 5 1700331

    Article  Google Scholar 

  7. Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A et al 2014 Energy Environ. Sci. 7 3061

    Article  CAS  Google Scholar 

  8. Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z et al 2015 J. Mater. Chem. A 3 23829

    Article  CAS  Google Scholar 

  9. Babayigit A, Thanh D D, Ethirajan A, Manca J, Muller M, Boyen H G et al 2016 Sci. Rep. 6 18721

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin Z, Zhang Z, Xiu J, Song H, Gatti T and He Z 2020 J. Mater. Chem. A. 8 16166

    Article  CAS  Google Scholar 

  11. Ghosh B, Wu B, Mulmdi H K, Guet C, Weber K, Sum T C et al 2018 ACS Appl. Mater. Interfaces 10 35000

    Article  CAS  PubMed  Google Scholar 

  12. Debbichi L, Lee S, Cho H, Rappe A M, Hong K H, Jang M S et al 2018 Adv. Mater. 30 1707001

    Article  Google Scholar 

  13. Kim Y, Yang Z, Jain A, Voznyy O, Kim G H, Liu M et al 2016 Angew. Chem. Int. Ed. 55 9586

    Article  CAS  Google Scholar 

  14. Oldag T, Aussieker T, Keller H L, Preitschaft C and Pfitzner A 2005 Z. fur Anorg. Allg. Chem. 631 677

    Article  CAS  Google Scholar 

  15. Turkevych I, Kazaoui S, Ito E, Urano T, Yamada K, Tomiyasu H et al 2017 ChemSusChem 10 3754

    Article  CAS  PubMed  Google Scholar 

  16. Khazaee M, Sardashti K, Chung C C, Sun J P, Zhou H, Bergmann E et al 2019 J. Mater. Chem. A 7 2095

    Article  CAS  Google Scholar 

  17. Wu M C, Wang Q H, Hsiao K C, Chen S H, Ho C M, Jao M H et al 2022 Chem. Eng. J. Adv. 10 100275

    Article  CAS  Google Scholar 

  18. Zhu H, Pan M, Johansson M B and Johansson E M 2017 ChemSusChem 10 2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu C, Zhang J, Sun H, Hou D, Gan X, Shang M H et al 2018 ACS Appl. Energy Mater. 1 4485

    Article  CAS  Google Scholar 

  20. Jung K W, Sohn M R, Lee H M, Yang I S, Do Sung S, Kim J et al 2018 Sustain. Energy Fuels 2 294

    Article  CAS  Google Scholar 

  21. Ghosh B, Wu B, Guo X, Harikesh P C, John R A, Baikie T et al 2018 Adv. Energy Mater. 8 1802051

    Article  Google Scholar 

  22. Pai N, Lu J, Gengenbach T R, Seeber A, Chesman A S, Jiang L et al 2019 Adv. Energy Mater. 9 1803396

    Article  Google Scholar 

  23. Zhang Q, Wu C, Qi X, Lv F, Zhang Z, Liu Y et al 2019 ACS Appl. Energy Mater. 2 3651

    Article  CAS  Google Scholar 

  24. Zhai W, Huang L, Cui X, Li G, Zhang Z, Chen P et al 2022 J. Mater. Chem. C 10 5321

    CAS  Google Scholar 

  25. Yu F, Wang L, Ren K, Yang S, Xu Z, Han Q et al 2020 ACS Sustain. Chem. Eng. 8 9980

    Article  CAS  Google Scholar 

  26. Grandhi G K, Al-Anesi B, Pasanen H, Ali-Löytty H, Lahtonen K, Granroth S et al 2022 Small 18 2203768

    Article  CAS  Google Scholar 

  27. Xiong H, DeLuca G, Bach U, Jiang L, Zhang Q, Reichmanis E et al 2020 ACS Omega 5 32295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li G, Zhang T and Zhao Y 2015 J. Mater. Chem. A 3 19674

    Article  CAS  Google Scholar 

  29. Chen J and Park N G 2019 Adv. Mater. 31 1803019

    Article  CAS  Google Scholar 

  30. Yang L, Wang J and Leung W W 2015 ACS Appl. Mater. Interfaces 7 14614

    Article  CAS  PubMed  Google Scholar 

  31. Shin J, Kim M, Jung S, Kim C S, Park J, Song A et al 2018 Nano Res. 11 6283

    Article  CAS  Google Scholar 

  32. Zhu W, Zhang Q, Chen D, Zhang Z, Lin Z, Chang J et al 2018 Adv. Energy Mater. 8 1802080

    Article  Google Scholar 

  33. Dharani S, Dewi H A, Prabhakar R R, Baikie T, Shi C, Yonghua D et al 2014 Nanoscale 6 13854

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Qing J, Chandran H T, Cheng Y H, Liu X K, Li H W, Tsang S W et al 2015 ACS Appl. Mater. Interfaces 7 23110

    Article  CAS  PubMed  Google Scholar 

  35. Yang D, Zhou X, Yang R, Yang Z, Yu W, Wang X et al 2016 Energy Environ. Sci. 9 3071

    Article  CAS  Google Scholar 

  36. Fan L, Ding Y, Luo J, Shi B, Yao X, Wei C et al 2017 J. Mater. Chem. A 5 7423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Atomic Energy-Board of Research in Nuclear Sciences (58/14/15/2020-BRNS/37213), Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Govindaraj.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1498 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanth, B., Isaac Daniel, R., Govindaraj, R. et al. Fabrication of carbon-based, lead-free AgBiI4 Rudorffite solar cell with HCl as an additive. Bull Mater Sci 47, 36 (2024). https://doi.org/10.1007/s12034-023-03108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03108-w

Keywords

Navigation