Skip to main content
Log in

Investigation of energy harvesting performance of BCZT piezoelectric ceramics under low frequency

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study focuses on evaluating the output performance of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) piezoceramics, specifically for low-frequency energy harvesting applications. The BCZT ceramics are fabricated using the solid-state reactive sintering (SSRS) method combined with the cold isostatic pressing (CIP) technique. Characterization of the ceramic phase and microstructure is conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties (εr and tan δ), ferroelectric properties (P–E and S–E hysteresis loops) and piezoelectric properties (piezoelectric constant (d33), piezoelectric voltage constant (g33), figure of merit (FOM), mechanical quality factor (Qm) and the electromechanical coupling factor (kp)) of the BCZT ceramics are also investigated. The results indicate that the BCZT ceramics (with dimensions of 30 × 14 × 1 mm3) demonstrate the capability to generate a maximum power of 2.86, 6.45, 17.52 and 28.03 µW across a 1 MΩ resistor when subjected to compressive loads of 50, 100, 150 and 200 N at a frequency of 0.3 Hz. The energy harvesting performance of the BCZT ceramic suggests promising potential for practical energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lee J-H, Kim J, Kim T Y, Al Hossain M S, Kim S-W and Kim J H 2016 J. Mater. Chem. A 4 7983

    Article  CAS  Google Scholar 

  2. Selvan K V and Mohamed Ali M S 2016 Renew. Sust. Energ. Rev. 54 1035

    Article  Google Scholar 

  3. Shaikh F K and Zeadally S 2016 Renew. Sust. Energ. Rev. 55 1041

    Article  Google Scholar 

  4. Kuang Y, Ruan T, Chew Z J and Zhu M 2017 Sens. Actuator A: Phys. 254 69

    Article  CAS  Google Scholar 

  5. Mateu L, Dräger T, Mayordomo I and Pollak M 2014 Wearable sensors (eds) E Sazonov and M R Neuman (Oxford: Academic Press) p 235

  6. Proto A, Penhaker M, Conforto S and Schmid M 2017 Trends. Biotechnol. 35 610

    Article  CAS  Google Scholar 

  7. Yang Z, Zhou S, Zu J and Inman D 2018 Joule 2 642

    Article  CAS  Google Scholar 

  8. Rödel J, Webber K G, Dittmer R, Jo W, Kimura M and Damjanovic D 2015 J. Eur. Ceram. Soc. 35 1659

    Article  Google Scholar 

  9. Villafuerte-Castrejón M, Morán E, Reyes-Montero A, Vivar-Ocampo R, Peña-Jiménez J-A, Rea-López S-O et al 2016 Materials 9 21

    Article  Google Scholar 

  10. Liu W and Ren X 2009 J. Am. Phys. Soc. 103 257602

    Google Scholar 

  11. Gaur A, Chauhan V S and Vaish R 2023 Environ. Sci.: Adv. 2 462

    CAS  Google Scholar 

  12. Sharma M, Singh V P, Kumar S and Vaish R 2020 J. Appl. Phys. 127 135103

    Article  Google Scholar 

  13. Dubey S, Gaur A, Alfryyan N, Alrowaili Z A, Al-Buriahi M S and Vaish R 2023 Int. J. Appl. Ceram. Technol. 20 3725

    Article  CAS  Google Scholar 

  14. Yan X, Zheng M, Hou Y and Zhu M 2017 J. Eur. Ceram. Soc. 37 2583

    Article  CAS  Google Scholar 

  15. Wang P, Li Y and Lu Y 2011 J. Eur. Ceram. Soc. 31 2005

    Article  CAS  Google Scholar 

  16. Maamer B, Boughamoura A, El-Bab A M F, Francis L A and Tounsi F 2019 Energy Convers. Manag. 199 111973

    Article  Google Scholar 

  17. Liu Y, Khanbareh H, Halim M A, Feeney A, Zhang X, Heidari H and Ghannam R 2021 Nano. Select. 2 1459

    Article  Google Scholar 

  18. Buatip N, Munthala D, Amonpattaratkit P, Pomyai P, Sonklin T, Reichmann K et al 2020 Radiat. Phys. Chem. 172 108770

    Article  CAS  Google Scholar 

  19. Munthala D, Sonklin T, Buatip N, Pomyai P, Amonpattaratkit P, Klysubun W et al 2020 Scr. Mater. 188 249

    Article  CAS  Google Scholar 

  20. Munthala D, Sonklin T, Pomyai P, Luo Z, Crawley F, Buatip N et al 2021 Ceram. Int. 47 25158

    Article  CAS  Google Scholar 

  21. Garvie R C and Nicholson P S 1972 J. Am. Ceram. Soc. 55 303

    Article  CAS  Google Scholar 

  22. Li L, Xie L and Pan X 2019 Rep. Prog. Phys. 82 126502

    Article  CAS  Google Scholar 

  23. Li L, Xu J, Liu J and Gao F 2018 Adv. Compos. Hybrid Mater. 1 478

    Article  CAS  Google Scholar 

  24. Mason W P and Jaffe H V 1954 Proc. IRE 42 921

    Article  CAS  Google Scholar 

  25. Merselmiz S, Hanani Z, Prah U, Mezzane D, Hajji L, Abkhar Z et al 2022 Phys. Chem. Chem. Phys. 24 6026

    Article  CAS  Google Scholar 

  26. Kaarthik J, Kaushiga C, Sradha G, Ram N, Reddy S G, Sekhar K et al 2023 J. Alloys Compd. 943 169069

    Article  CAS  Google Scholar 

  27. Yan M, Liu S, Xiao Z, Yuan X, Zhai D, Zhou K et al 2022 Ceram. Int. 48 5017

    Article  CAS  Google Scholar 

  28. Baraskar B G, Kolekar Y D, Thombare B R, James A R, Kambale R C and Ramana C 2023 Small 2300549

  29. Al-Ashtari W 2013 PhD Thesis (Aachen: University of Baghdad)

  30. Alexander C K and Sadiku M N O (eds) 2017 Fundamentals of electric circuits (New York: McGraw-hill Education)

    Google Scholar 

  31. Uchino K 2018 Energy Technol. 6 829

    Article  Google Scholar 

  32. Ji J-H, Yoon S and Koh J-H 2021 J. Asian Ceram. Soc. 9 75

    Article  Google Scholar 

  33. Shin D-J and Koh J-H 2017 Ceram. Int. 43 S649

    Article  CAS  Google Scholar 

  34. Janphuang P, Lockhart R, Uffer N, Briand D and Rooij N F 2014 Sens. Actuators A: Phys. 210 1

    Article  CAS  Google Scholar 

  35. Wu J, Shi H, Zhao T, Yu Y and Dong S 2016 Adv. Funct. Mater. 26 7186

    Article  CAS  Google Scholar 

  36. Zhang Y, Liu X, Wang G, Li Y, Zhang S, Wang D et al 2020 J. Alloys Compd. 825 154020

    Article  CAS  Google Scholar 

  37. Oh Y, Noh J, Yoo J, Kang J, Hwang L and Hong J 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 1860

    Article  Google Scholar 

  38. Zheng M, Hou Y, Yan X, Zhang L and Zhu M 2017 J. Mater. Chem. C 5 7862

    Article  CAS  Google Scholar 

  39. Yan X, Zheng M, Sun S, Zhu M and Hou Y 2018 Dalton Trans. 47 9257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N Buatip acknowledges financial support from the Royal Golden Jubilee (RGJ) PhD Program (Grant No. PHD/0233/2558) through the National Research Council of Thailand (NRCT), Thailand Research Fund (TRF) and Synchrotron Light Research Institute (SLRI) Public Organization Thailand. D Munthala also acknowledges the SUT Research and Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soodkhet Pojprapai.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buatip, N., Munthala, D., Janphuang, P. et al. Investigation of energy harvesting performance of BCZT piezoelectric ceramics under low frequency. Bull Mater Sci 47, 25 (2024). https://doi.org/10.1007/s12034-023-03104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03104-0

Keywords

Navigation