Skip to main content
Log in

Aqueous electrolyte-mediated Al3+ ion storage in electrochemically treated Ti3AlC2

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report a simple electrochemical method to exfoliate the Ti3AlC2 MAX phase and also investigate the Al3+ ion storage phenomenon in aqueous electrolyte. The exfoliation process avoids the harmful Hydrofluoric acid, which is often used for the processing of MXenes. It is demonstrated that exfoliation could be achieved when a hybrid aqueous electrolyte was utilized for the electrochemical treatment of Ti3AlC2. Additionally, porous surface structure could also be noticed. The electrolyte is an aqueous mixture of 1 M AlCl3 and 5 M NaOH (1:10 v/v). The exfoliation was evidenced by electron microscopy images, XRD patterns and Raman spectra. The Al3+ ion storage behaviour is also demonstrated in the exfoliated MAX phase. It was revealed that kinetics is governed by a diffusion-controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2

References

  1. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M et al 2011 Adv. Mater. 23 4248

    Article  CAS  Google Scholar 

  2. Ronchi R M, Arantes J T and Santos S F 2019 Ceram. Int. 45 18167

    Article  CAS  Google Scholar 

  3. Gogotsi Y and Anasori B 2019 ACS Nano 13 8491

    Article  CAS  Google Scholar 

  4. Anasori B and Gogotsi Y (eds) 2019 2D metal carbides and nitrides (MXenes): structure, properties and applications (Switzerland: Springer)

  5. Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L et al 2013 Science 341 1502

  6. Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y and Barsoum M W 2014 Nature 516 78

    Article  CAS  Google Scholar 

  7. Li X, Huang Z, Shuck C E, Liang G, Gogotsi Y and Zhi C 2022 Nat. Rev. Chem. 6 389

    Article  Google Scholar 

  8. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L et al 2012 ACS Nano 6 1322

    Article  CAS  Google Scholar 

  9. Nguyen V H, Nguyen B S, Hu C, Nguyen C C, Nguyen D L T, Nguyen Dinh M T et al 2020 J. Nanomater. 10 602

    Article  CAS  Google Scholar 

  10. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S et al 2017 Chem. Mater. 29 7633

    Article  CAS  Google Scholar 

  11. Benchakar M, Loupias L, Garnero C, Bilyk T, Morais C, Canaff C et al 2020 Appl. Surf. Sci. 530 147209

    Article  CAS  Google Scholar 

  12. Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T et al 2017 J. Mater. Chem. A 5 21663

    Article  CAS  Google Scholar 

  13. Pang S Y, Wong Y T, Yuan S, Liu Y, Tsang M K and Yang Z 2019 J. Am. Chem. Soc. 141 9610

    Article  CAS  Google Scholar 

  14. Chen J, Chen M, Zhou W, Xu X and Liu B 2022 ACS Nano. 16 2461

    Article  CAS  Google Scholar 

  15. Vahid M A, Hadjikhani A, Shahbazmohamadi S and Beidaghi M 2017 ACS Nano 11 11135

    Article  Google Scholar 

  16. Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å et al 2014 Chem. Mater. 26 2374

    Article  CAS  Google Scholar 

  17. Li T, Yao L, Liu Q, Gu J, Luo R, Li J et al 2018 Angew. Chem. Int. Ed. 57 6115

    Article  CAS  Google Scholar 

  18. Jawaid A, Hassan A, Neher G, Nepal D, Pachter R, Kennedy W J et al 2021 ACS Nano 15 2771

    Article  CAS  Google Scholar 

  19. Nandi S and Das S K 2019 ACS Sus. Chem. Eng. 7 19839

    Article  CAS  Google Scholar 

  20. Xiao Z L, Han C Y, Welp U, Wang H H, Kwok W K, Willing G A et al 2002 Nano Lett. 2 1293

    Article  CAS  Google Scholar 

  21. Sadeghpour-Motlagh M, Mokhtari-Zonouzi K, Aghajani H and Kakroudi M G 2014 J. Mater. Eng. Perform. 23 2007

    Article  CAS  Google Scholar 

  22. Wang J, Polleux J, Lim J and Dunn B 2007 J. Phys. Chem. C 111 14925

    Article  CAS  Google Scholar 

  23. Sarycheva A and Gogotsi Y 2020 Chem. Mater. 32 3480

    Article  CAS  Google Scholar 

  24. Krishnamoorthy K, Pazhamalai P, Sahoo S and Kim S J 2017 J. Mater. Chem. A 5 5726

    Article  CAS  Google Scholar 

  25. Li K, Parvez R, Puniredd S R, Hernandez Y, Hinkel F, Wang S et al 2013 ACS Nano 7 3598

    Article  Google Scholar 

  26. Parvez K, Wu Z S, Li R, Liu X, Graf R, Feng X et al 2014 J. Am. Chem. Soc. 136 6083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by SERB, DST, Government of India (grant no.: CRG/2018/000263). We also acknowledge the FESEM facility supported by the DST FIST programme. DS acknowledges the DST-INSPIRE for the INSPIRE fellowship (IF170606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal K Das.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, D., Goswami, T.K. & Das, S.K. Aqueous electrolyte-mediated Al3+ ion storage in electrochemically treated Ti3AlC2. Bull Mater Sci 47, 23 (2024). https://doi.org/10.1007/s12034-023-03095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03095-y

Keywords

Navigation