Skip to main content
Log in

Investigation of structural, optoelectronic and mechanical properties of halide perovskites (CsInX3; X = Br, Cl) using DFT for absorbing layer of perovskite solar cell

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Halide perovskite materials belong to a fascinating novel class, and recently captured incredible attention as a leading aspirant for next-generation photovoltaic technology, because of their flexible chemistry and extraordinary optoelectronic properties, they also deliver a pattern for designing new materials for energy conversion and energy storage applications. In this study, we thoroughly explore the structural, electronic, optical and mechanical properties of the inorganic halide cubic perovskites (CsInX3; X = Br, Cl) for solar cell (SC) application, simulated under density functional theory (DFT) based WIEN2k code with PBE-GGA approximation. The optimized lattice parameters were found to be 11.67 Ǻ for CsInBr3 and 11.16 Ǻ for CsInCl3, respectively. The variation in the structural parameters with changing the halogen atom from Br to Cl was observed. The electronic and optical properties were computed by TB-mBJ method. These halide perovskites reveal an indirect energy bandgap quantified as 1.22 and 2.2 eV, high absorption coefficient and low reflectivity. The elastic constants (C11, C12 and C44) followed the Born stability condition, and confirmed the mechanical stability. According to the Poisson ratio (ν) and Pugh’s ratio (B/G), materials endorsed ductile behaviour as well exhibit anisotropic nature. Moreover, our theoretical findings suggested that the investigated materials have high absorption coefficients, high conductivity and low reflectivity, which makes them promising contender for SC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ghrib T, Rached A, Algrafy E, Al-nauim I A, Albalawi H et al 2021 Mater. Chem. Phys. 264 124435

    CAS  Google Scholar 

  2. Zhang L, Miao J, Li J and Li Q 2020 Adv. Funct. Mater. 30 2003653

    Article  CAS  Google Scholar 

  3. Narayanan S, Parikh N, Tavakoli M M, Pandey M, Kumar M, Kalam A et al 2021 EurJIC 13 1201

    Google Scholar 

  4. Goel P, Sundriyal S, Shrivastav V, Mishra S, Dubal D P, Kim K H et al 2021 Nano Energy 80 105552

    Article  CAS  Google Scholar 

  5. Soni A, Bhamu K C and Sahariya J 2020 J. Alloys Compd. 817 152758

    Article  CAS  Google Scholar 

  6. Hussain M, Rashid M, Ali A, Bhopal M F and Bhatti A S 2020 Ceram. Int. 46 21378

    Article  CAS  Google Scholar 

  7. Ma X, Li Z and Yang J 2021 J. Phys. Chem. C 125 10868

    Article  CAS  Google Scholar 

  8. Albalawi H, Mustafa G M, Saba S, Kattan N A, Mahmood Q, Somaily H et al 2022 Mater. Today Commun. 32 104083

    Article  CAS  Google Scholar 

  9. Ramanathan A A and Khalifeh J M 2021 Peer J. Mater. Sci. 3 15

    Google Scholar 

  10. Haman Z, Kibbou M, Bouziani I, Benhouria Y, Essaoudi I, Ainane A et al 2021 Physica B 604 412621

    Article  CAS  Google Scholar 

  11. Lan C, Zhou Z, Wei R and Ho J C 2019 Mater. Today Energy 11 61

    Article  CAS  Google Scholar 

  12. Wang Z, Ganose A M, Niu C and Scanlon D O 2018 J. Mater. Chem. A 6 5652

    Article  CAS  Google Scholar 

  13. Kirchartz T, Márquez J A, Stolterfoht M and Unold T 2020 Adv. Energy Mater. 10 1904134

    Article  CAS  Google Scholar 

  14. Liang J, Liu J and Jin Z 2017 Solar RRL 11 700086

    Google Scholar 

  15. Lei L, Dong Q, Gundogdu K and So F 2021 Adv. Funct. Mater. 31 2010144

    Article  CAS  Google Scholar 

  16. Zhang W, Eperon G E and Snaith H J 2016 Nat. Energy 1 8

    Google Scholar 

  17. Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 391 402

    Google Scholar 

  18. Mukhtar M W, Ramzan M, Rashid M, Naz G, Imran M, Fahim F et al 2021 Mater. Sci. Eng. B 273 115420

    Article  Google Scholar 

  19. Ali M A, Zarin H, Salam S, Shah A, Dar S A, Khan A et al 2020 J. Supercond. Nov. Magn. 33 1045

    Article  Google Scholar 

  20. Ahmed H, Mukhtar S, Agathopoulos S and Ilyas S Z 2022 Physica B Condens. 640 414085

    Article  CAS  Google Scholar 

  21. Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    Article  CAS  Google Scholar 

  22. Wang G, Chang J, Bi J, Lei M, Wang C and Qiao Q 2022 Solar RRL 6 2100841

    Article  CAS  Google Scholar 

  23. Zhu Z, Jiang X, Yu D, Yu N, Ning Z and Mi Q 2022 ACS Energy Lett. 7 2079

    Article  CAS  Google Scholar 

  24. Yuan Y, Yan G, Hong R, Liang Z and Kirchartz T 2022 Adv. Mater. 34 2108132

    Article  CAS  Google Scholar 

  25. Liu S M, Zhong H X, Liang J J, Zhang M, Zhu Y H, Du J et al 2022 J. Mater. Chem. A 10 10682

    Article  CAS  Google Scholar 

  26. Alla M, Bimli S, Manjunath V, Samtham M, Kasaudhan A, Choudhary E et al 2022 Mater. Technol. 37 12963

    Article  Google Scholar 

  27. Ghebouli M A, Ghebouli B, Chihi T, Fatmi M and Ahmed S I 2021 Mater. Sci. Semicond. 135 106033

    Article  Google Scholar 

  28. Khan S, Mehmood N, Ahmad R, Kalsoom A and Hameed K 2022 Mater. Sci. Semicond. 150 106973

    Article  CAS  Google Scholar 

  29. Liu D, Peng H, Li Q and Sa R 2022 J. Phys. Chem. Solids 110 413

    Google Scholar 

  30. Liu H F, Zhang S C, Liu L J, Zhang Z W and Wang J L 2020 Chem. Phys. Lett. 740 137062

    Article  CAS  Google Scholar 

  31. Bin Mohd Yusoff A R, Vasilopoulou M, Georgiadou D G, Palilis L C, Abate A and Nazeeruddin M K 2021 Energy Environ. Sci. 14 2906

    Article  Google Scholar 

  32. Pitaro M, Tekelenburg E K, Shao S and Loi M A 2022 Adv. Mater. 34 2105844

    Article  CAS  Google Scholar 

  33. Xiao Z and Yan Y 2017 Adv. Energy Mater. 7 1701136

    Article  Google Scholar 

  34. Ahmed H, Jalil A, Syed Zafar Ilyas, Simeon Agathopoulos, Ishaq Ahmed, Tingkai Zhao et al 2022 J. Phys. Chem. Solids 161 110429

  35. Ahmed H, Jalil A, Ilyas S Z, Agathopoulos S, Ahmed I, Zhao T et al 2022 J. Phys. Chem. Solids 161 110429

    Article  CAS  Google Scholar 

  36. Dong, Chao Ran, Yue Wang, Kan Zhang and Haibo Zeng 2020 Energy Chem. 2 100026

  37. Shi E, Gao Y, Finkenauer B P, Coffey A H and Dou L 2018 Chem. Soc. Rev. 47 6046

    Article  CAS  Google Scholar 

  38. Shuvo I K, Saiduzzaman M, Asif T I, Haq M A and Hossain K M 2022 Mater. Sci. Eng: B 278 115645

    Article  CAS  Google Scholar 

  39. Haq B U, AlFaify S, Ahmed R, Butt F K, Laref A and Shkir M 2018 Phys. Rev. B 97 075438

    Article  Google Scholar 

  40. Noor N A, Rashid M, Alay-e-Abbas S M, Raza M, Mahmood A, Ramay S M et al 2016 Mater. Sci. Semicond. 49 40

    Article  CAS  Google Scholar 

  41. Bazaka K and Jacob M V 2017 J. Nanomater. 7 11

    Article  Google Scholar 

  42. Joshi T K, Shukla A, Sharma G and Verma A S 2020 Mater. Chem. Phys. 251 123103

    Article  CAS  Google Scholar 

  43. Rehman S U, Butt F K, Haq B U, AlFaify S, Khan W S and Li C 2018 Sol. Energy 169 648

    Article  CAS  Google Scholar 

  44. Rehman J U, Usman M, Amjid S, Sagir M, Tahir M B, Hussain A et al 2022 Comput. Theor. Chem. 1209 113624

    Article  Google Scholar 

  45. Islam J and Hossain A A 2020 Sci. Rep. 10 14391

    Article  CAS  Google Scholar 

  46. Hossain M S, Haque Babu M M, Saha T, Hossain M S, Podder J, Rana M S et al 2021 AIP Adv. 110 55024

    Article  Google Scholar 

  47. Rahaman M M, Rubel M H, Rashid M A, Alam M A, Hossain K M, Hossain M I et al 2019 J. Mater. Res. Technol. 8 3783

    Article  CAS  Google Scholar 

  48. Roknuzzaman M, Ostrikov K, Wang H, Du A and Tesfamichael T 2017 Sci. Rep. 7 14025

    Article  Google Scholar 

  49. Yu G, Lee C H, Heeger A J and Cheong S W 1992 Phys. C: Supercond. 203 419

    Article  CAS  Google Scholar 

  50. Atiyah M, Patodi V K and Singer I 1975 Math. Proc. Camb. Philos. Soc. 43 69

    Google Scholar 

  51. Birch F 1947 Phys. Rev. 71 809

    Article  CAS  Google Scholar 

  52. Mukhtar M W, Ramzan M, Rashid M, Hussain A, Imran M, Fahim F et al 2022 J. Solid State Chem. 306 122781

    Article  CAS  Google Scholar 

  53. Hadi M A, Nasir M T, Roknuzzaman M, Rayhan M A, Naqib S H and Islam A K 2016 Phys. Status Solidi B 253 6

    Article  Google Scholar 

  54. Hadi M A, Roknuzzaman M, Chroneos A, Naqib S H, Islam A K, Vovk R V et al 2017 Comput. Mater. Sci. 137 318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to extend our sincere appreciation to the Researcher supporting program at King Saud University, Riyadh, for funding this work under project number (RSPD2024R699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mansoor Ali.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Ali, S.M., Kassim, H. et al. Investigation of structural, optoelectronic and mechanical properties of halide perovskites (CsInX3; X = Br, Cl) using DFT for absorbing layer of perovskite solar cell. Bull Mater Sci 47, 15 (2024). https://doi.org/10.1007/s12034-023-03088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03088-x

Keywords

Navigation