Skip to main content
Log in

A Si-activated Ca9AlP7O28 nanostructure: synthesis and thermoluminescence characteristics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Thermoluminescence (TL) response of newly synthetic silicon-activated Ca9AlP7O28 nanophosphor doped with different concentrations (0.3–10 mol%) (abbreviated as CAP: Six) were prepared by the sol–gel method. The optimum concentration of Si ions for the best TL response was found to be 0.3 mol% (CAP: Si0.3), which was selected for subsequent dosimetric measurements. Phase purity and the crystal structure of the CAP: Si0.3 sample were identified and verified using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis, where results obtained confirmed the successful synthetic method used in the preparation of the nanophosphor samples. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) mapping revealed the localization of constituent elements and indicated the homogeneous distribution of Si-ions as well as the feasibility of dopants in the herein sample. The dosimetric properties of the CAP: Si0.3 sample, including glow curve structure, reproducibility, repeatability, dose–response and fading effect, were extensively investigated. The gamma irradiated CAP: Si0.3 sample exhibited a simple glow curve of a single prominent peak centred at 222 ± 1.33°C with considerably high TL intensity (1.22 relative to MTS-700 TLD detector). The relative standard deviation (RSD) of peak areas of CAP: Si0.3 were 5.25 and 2.7% for reproducibility and repeatability studies, respectively. These values of RSD were <10%, so they were acceptable internationally. A good linear dose–response relationship was achieved over a dose range of up to 20 Gy with an excellent correlation coefficient of R2 = 0.9969 and a calibration factor of F = 51.75 × 107 a.u./Gy. Almost no fading was registered from the studied CAP: Si0.3 sample after irradiation. Zeff values were found to be in the range 11.62 to 11.61, which are closely related to that of natural bone (11.3 to 11.8). Minimum detectable dose of CAP: Si0.3 had a value of 11 μGy. The outstanding features of this herein-prepared sample make it a good TLD nanophosphor, very suitable for personnel and environmental dosimetry of γ-radiation within the studied dose range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Sueo M 1995 Radiat. Phys. Chem. 46 399

    Google Scholar 

  2. Andrzej G C and Mohammad H S 2004 Radiat. Phys. Chem. 71 17

    Article  Google Scholar 

  3. Sueo M 1996 Radiat. Phys. Chem. 47 333

    Article  Google Scholar 

  4. Jimmy C H, Puhl J M, Stephen M S, William L M, Marc F D, Debra L B et al 1998 NIST Special Publication 250–44 40

    Google Scholar 

  5. Hossam A O, Hany A, Abdel Azim H, Hussein E, Sufyan A A and Intesar A E 2021 Ceram. Int. 47 27789

    Article  Google Scholar 

  6. Intesar A E, Sufyan A A and Hossam A O 2020 J. Lumin. 227 117555

    Article  Google Scholar 

  7. Intesar A E and Sufyan A 2018 J. Non-Cryst. Solids 482 236

    Article  Google Scholar 

  8. Intesar A E, Noha K E, Abdel Azim E H, Hussein M E and Sufyan A A 2016 J. Lumin. 31 1433

    Google Scholar 

  9. Intesar A E, Abdel Azim E H, Hussein M E and Sufyan A A 2014 Isot. Radiat. Res. 46 277

    Google Scholar 

  10. Abdullah M N, Yusoff M A, Rosli H M and David A B 2001 Radiat. Phys. Chem. 61 497

    Article  Google Scholar 

  11. Unniyattil M, Jose M T, Akihiro T, Hoffmann W and Arunachalam R L 1999 J. Lumin. 82 221

    Article  Google Scholar 

  12. Arunachalam R L, Jose M T, Vinoth K P and Pardeep V K 2002 J. Phys. D: Appl. Phys. 35 386

    Article  Google Scholar 

  13. Sambhaji S S, Bhushan S D, Tumkur K G R and Buhwan C B 2001 J. Phys. D: Appl. Phys. 34 2683

    Article  Google Scholar 

  14. Sahare P D and Sanjiv V M 1990 J. Phys. D: Appl. Phys. 23 567

    Article  CAS  Google Scholar 

  15. Sanjay J D, Sanjiv V M, Suresh M D, Pradeep L M and Vivek K K 1993 Phys. Status Solidi (a) 135 289

    Article  Google Scholar 

  16. Fariha H, Georgios K and Salome C 1985 Nucl. Instrum. Methods Phys. Res. Sect. B 9 218

    Article  Google Scholar 

  17. Noman S, Sahare P D, Satya P L and Partik K 2006 Radiat. Meas. 41 40

    Article  Google Scholar 

  18. Noman S, Sahare P D and Alexander A R 2007 J. Lumin. 124 357

    Article  Google Scholar 

  19. Satya P L, Sahare P D, Ramswaroop S C, Noman S, Rajiv R and Akhilesh P 2007 J. Phys. D: Appl. Phys. 40 1343

    Article  Google Scholar 

  20. Nandkumar T M, Sahare P D, Makarand K, Bhuwan B, Vasanth N B and Sanjay D D 2014 J. Lumin. 146 128

    Article  Google Scholar 

  21. Nandkumar T M, Sahare P D, Bhushankumar P, Bhoraskar Vasanth N and Sanjay D D 2013 Nucl. Instrum. Methods Phys. Res. B 315 273

    Article  Google Scholar 

  22. Sahare P D, Rajiv R, Noman S and Satya P L 2007 J. Phys. D: Appl. Phys. 40 759

    Article  CAS  Google Scholar 

  23. Juan M M, Raquel B, Carlos C V, Salcido Romero E G and Castaño V M 2010 Radiat. Prot. Dosim. 139 580

    Article  Google Scholar 

  24. Vsevolod S K, Nikiforov S V, Moiseikin E V, Alexander S V and Simanov A G 2013 Solid State Phys. 55 2088

    Article  Google Scholar 

  25. Vsevolod S K, Anatoliy E E, Zatsepin A F and Nikiforov S V 2008 Radiat. Meas. 43 341

    Article  Google Scholar 

  26. De Azevedo W M, Giovana B D O, Edelido F D S J, Khoury H J, de Ferreira E O and J, 2006 Radiat. Prot. Dosim. 119 201

    Google Scholar 

  27. Matthew W B, Luiz G J, Stephanie C T, Özkan U, Brydon L B, Eduardo G Y et al 2010 J. Lumin. 130 825

    Article  Google Scholar 

  28. Noman S, Zafar H K and Sameh S H 2011 Nucl. Instrum. Methods Phys. Res. B 269 401

    Article  Google Scholar 

  29. Geeta R and Sahare P D 2013 Nucl. Instrum. Methods Phys. Res. B 311 71

    Article  Google Scholar 

  30. Nandkumar T M, Vijaykumor B V, Makarand S K, Bhuwan C B, Sahare P D, Shital A R et al 2020 Nucl. Instrum. Methods Phys. Res. B 466 90

    Article  Google Scholar 

  31. Rohit K R, Amit K U, Rajiv S K and Sanjay J D 2012 J. Lumin. 132 210

    Article  Google Scholar 

  32. Vladimir N M, Aleksandr L, Ch B L, Marco K, Evegni A V et al 2008 Nucl. Instrum. Methods Phys. Res. B 266 2949

    Article  Google Scholar 

  33. Adrie J J B 2001 Nucl. Instrum. Methods Phys. Res. B 184 3

    Article  Google Scholar 

  34. He X, Zhu Z, Lijian H and Fachuang L 2016 Rare Met. Mater. Eng. 45 1659

    CAS  Google Scholar 

  35. Doory K, Han E K and Chang H K 2016 PLoS ONE 1 11

    Google Scholar 

  36. Preethi R, Sridhar K, Amar B, Rajkumar R and Eric L C 1988 J. Mater. Res. 3 810

    Article  Google Scholar 

  37. Jeffery C B and George W S 1990 Sol-gel science: the physics and chemistry of sol-gel processing (Academic press an Imprint of Elsevier. Depatment of Oxford, UK)

  38. Mulder C A M, van Leeuwen-Stienstra G, Van Lierop J G and Woerdman J P 1986 J. Non-Cryst. Solids 82 148

    Article  CAS  Google Scholar 

  39. Johan H H and Stephen M S 1995 Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest (National Inst. of Standards and Technology-PL, Gaithersburg (United States: NIST)

  40. Ahmed E, Abdul Azim H, Hussein E, Noha K, Amin E and Hossam D 2011 J. Radioanal. Nucl. Chem. 288 65

    Article  Google Scholar 

  41. Daphne F J and Hawkes D J 1981 Phys. Rep. 70 169

    Article  Google Scholar 

  42. Parthasaradhi K 1968 Studies on the effective atomic numbers in alloys for gamma-ray interactions in the energy region 100 to 662 keV (Andhra University, Waltair, India)

    Google Scholar 

  43. Leif G, Guilbert N, Bjørn Jensen K and Levring H 2004 Radiat. Phys. Chem. 71 653

    Article  Google Scholar 

  44. Chen R, McKeever S W S 1997 Theory of Thermoluminescence and related phenomena (Singapore: World Scientific)

    Google Scholar 

  45. Nil K, Aziz H G, Mehmet Y, Tamer D and Mustafa T 2015 Appl. Radiat. Isot. 104 186

    Article  Google Scholar 

  46. Ilich B M 1979 Sov. Phys. Solid State 21 1880

    Google Scholar 

  47. Mahmoud S R, Mahmoud A E and Mohamed A H 2006 Radiat. Eff. Defects Solids 161 579

    Article  Google Scholar 

  48. May C E and Partridge J A 1964 J. Chem. Phys. 40 1401

    Article  CAS  Google Scholar 

  49. Carlo M, Ricci A and Sergi A 1968 Ric. Sci. 9 762

    Google Scholar 

  50. Barbara O, Paweł B, Krzysztof H and Peter M 2014 High-level TL Dosimetry for high-temperature environment, RAD Conference, Nis, Serbia

  51. Leticia L C and Mateus F L 1986 Radiat. Prot. Dosim. 14 333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I A El-Mesady.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mesady, I.A., Alawsh, S.A., Hussein, A. et al. A Si-activated Ca9AlP7O28 nanostructure: synthesis and thermoluminescence characteristics. Bull Mater Sci 47, 16 (2024). https://doi.org/10.1007/s12034-023-03082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03082-3

Keywords

Navigation