Skip to main content
Log in

Computational quantum mechanical investigation of the functionalized AlN nanotube as the smart carriers for levodopa drug delivery: a DFT analysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Many research studies have been carried out on various nanostructures regarding their potential applications in drug delivery for treating different cancers. In fact, the serious side effects can be minimized by delivering various anticancer drugs to particular tumour cells. Within the present study, the ability of a pure AlN nanotube (PAlN-NT) and X-decorated (X = Au, Pt and Ir) AlN-NT to deliver the anticancer levodopa (LVP) drug is inspected through DFT computations. The results demonstrate that PAlN-NT is not suitable for the drug delivery of LVP. Decoration of the Au, Pt and Ir metals into the AlN-NT, respectively, raised the adhesion energy (Ead) of LVP from −4.3 to −27.2, −28.1 and −29.5 kcal mol−1. Ead for LVP/Ir-decorated AlN-NT structures is approximately −26.8 kcal mol−1 in the aqueous phase. Moreover, there is a substantial amount of charge transfer from LVP to the surface of the X-decorated AlN-NT based on the NBO analysis. Hence, based on the computations undertaken within this work, the X-decorated AlN-NT, especially Ir-decorated AlN-NT, can be utilized as a suitable LVP carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fox E R and Tyler L S 2003 Am. J. Health Syst. Pharm. 60 245

    Article  Google Scholar 

  2. Rishton G M 2008 Am. J. Card. 101 43

    Article  Google Scholar 

  3. Kolb H C and Sharpless K B 2003 Drug Discov. Today 8 1128

    Article  CAS  Google Scholar 

  4. Goodford P J 1985 J. Med. Chem. 28 849

    Article  CAS  Google Scholar 

  5. Zeng Q, Bie B, Guo Q, Yuan Y, Han Q, Han X et al 2020 Proc. Natl. Acad. Sci. 117 17558

    Article  CAS  Google Scholar 

  6. Kostova I 2006 Curr. Med. Chem. 13 1085

    Article  CAS  Google Scholar 

  7. Sadoughi N, Razvi M, Bush I, Ablin R and Guinan P 1974 Urology 4 107

    Article  CAS  Google Scholar 

  8. Waks A G and Winer E P 2019 JAMA 321 288

    Article  CAS  Google Scholar 

  9. Odle T G 2014 Radiol. Technol. 85 297

    Google Scholar 

  10. Danhier F, Feron O and Préat V 2010 J. Control Release 148 135

    Article  CAS  Google Scholar 

  11. Fan X, Wei G, Lin X, Wang X, Si Z, Zhang X et al 2020 Matter 2 1582

    Article  Google Scholar 

  12. Rapoport N 2007 Prog. Polym. Sci. 32 962

    Article  CAS  Google Scholar 

  13. Mahajan K 1997 Br. Med. J. 3 489

    Article  Google Scholar 

  14. Jones M, Ramsay I and Jenner P 1978 Br. J. Clin. Pharmacol. 5 425

    Article  CAS  Google Scholar 

  15. Müller T, Hefter H, Hueber R, Jost W H, Leenders K L, Odin P et al 2004 J. Neurol. 251 44

    Article  Google Scholar 

  16. Goodwin F K 1971 JAMA 218 1915

    Article  CAS  Google Scholar 

  17. Tibbitt M W, Dahlman J E and Langer R 2016 J. Am. Chem. Soc. 138 704

    Article  CAS  Google Scholar 

  18. Brotchie J M 2005 J. Mov. Disord. 20 919

    Article  Google Scholar 

  19. Thanvi B and Lo T 2004 Postgrad. Med. J. 80 452

    Article  CAS  Google Scholar 

  20. Dang Y and Guan J 2020 Smart Mater. Med. 1 10

    Article  Google Scholar 

  21. Peetla C, Vijayaraghavalu S and Labhasetwar V 2013 Adv. Drug Deliv. Rev. 65 1686

    Article  CAS  Google Scholar 

  22. Song X, Li Q and Zhang J 2023 Biomed. Pharmacother 162 114611 https://doi.org/10.1016/j.biopha.2023.114611

    Article  CAS  Google Scholar 

  23. Song Q L, Wang H, Yang J, Gao H, Wang K, Wang H et al 2022 Chin. Chem. Lett. 33 1577

    Article  CAS  Google Scholar 

  24. Wang Y, Zhai W, Cheng S et al 2023 Friction 11 1371–1394. https://doi.org/10.1007/s40544-022-0710-x

  25. Zoya I, He H, Wang L, Qi J, Lu Y and Wu W 2021 Chin. Chem. Lett. 32 1545

    Article  CAS  Google Scholar 

  26. Kumar M and Raza K 2017 Pharm. Nanotechnol. 5 169

    CAS  Google Scholar 

  27. Alipour E, Alimohammady F, Yumashev A and Maseleno A 2019 J. Mol. Model. 26 7

    Article  Google Scholar 

  28. Permyakova E S, Antipina L Y, Kovalskii A M, Zhitnyak I Y, Gudz K Y, Polčak J et al 2018 J. Phys. Chem. C 122 26409

    Article  CAS  Google Scholar 

  29. Darabinajand B, Mirmohseni A and Niaei A 2023 J. Appl. Polym. Sci. 140 53908

    Article  Google Scholar 

  30. Wang Y, Zhai W, Yang L, Cheng S, Cui W, Li J 2023 Adv. Ther. 6 2200297 https://doi.org/10.1002/adtp.202200297

    Article  Google Scholar 

  31. Huang H, Zhang B, Zhong J, Han G, Zhang J, Zhou H, Liu Y 2023 Med. Eng. Phys. 113 103966 https://doi.org/10.1016/j.medengphy.2023.103966

    Article  Google Scholar 

  32. Balmayor E R, Tuzlakoglu K, Azevedo H S and Reis R L 2009 Acta Biomater. 5 1035

    Article  CAS  Google Scholar 

  33. Cui G, Zhao K, You K, Gao Z, Kakuchi T, Feng B, Duan Q 2020 Sci. Technol. Adv. 21 1–10 https://doi.org/10.1080/14686996.2019.1700394

    Article  CAS  Google Scholar 

  34. Chen J, Li X, Chen L and Xie F 2018 Carbohydr. Polym. 191 242

    Article  CAS  Google Scholar 

  35. Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik E K et al 2016 Wires Nanomed. Nanobiol. 8 654

    Article  CAS  Google Scholar 

  36. Shi Z, Zhou Y, Fan T, Lin Y, Zhang H and Mei L 2020 Smart Mater. Struct. 1 32

    Google Scholar 

  37. Chamundeeswari M, Jeslin J and Verma M L 2019 Environ. Chem. Lett. 17 849

    Article  CAS  Google Scholar 

  38. Ji Z, Zheng J, Ma Y, Lei H, Lin W, Huang J et al 2023 Small. https://doi.org/10.1002/smll.202207888

    Article  Google Scholar 

  39. Kumari P, Ghosh B and Biswas S 2016 J. Drug Target. 24 179

    Article  CAS  Google Scholar 

  40. Alshawwa S Z, Kassem A A, Farid R M, Mostafa S K and Labib G S 2022 Pharmaceutics 14 883

    Article  CAS  Google Scholar 

  41. Reinholz J, Landfester K and Mailänder V 2018 Drug Deliv. 25 1694

    Article  CAS  Google Scholar 

  42. Singh P, Maiti P K and Sen K 2020 Bull. Mater. Sci. 43 56

    Article  CAS  Google Scholar 

  43. Jafari S, Dehghani M, Nasirizadeh N, Azimzadeh M and Banadaki F D 2021 Bull. Mater. Sci. 44 56

    Article  CAS  Google Scholar 

  44. Morsy R 2016 Bull. Mater. Sci. 39 1273

    Article  CAS  Google Scholar 

  45. Lin W, Huang J, Guo S, Zhao M, Chen X, Shang Q et al 2023 J. Mater. Chem. B. https://doi.org/10.1039/D3TB00747B

    Article  Google Scholar 

  46. Huang J, Jiang Y, Lin W, Chen R, Zhou J, Guo S et al 2023 ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.2c00601

    Article  Google Scholar 

  47. Mortazavifar A and Raissi H 2018 J. Clust. Sci. 29 93

    Article  CAS  Google Scholar 

  48. Sundraraman G and Jayakumari L S 2020 J. Clust. Sci. 31 241

    Article  CAS  Google Scholar 

  49. Monajjemi M and Mollaamin F 2012 J. Clust. Sci. 23 259

    Article  CAS  Google Scholar 

  50. von Ranke N L, Castro H C and Rodrigues C R 2022 J. Mol. Graph. Model. 113 108145

    Article  Google Scholar 

  51. Singh Y T, Patra P K, Obodo K O, Saad H-EMM and Rai D P 2022 J. Mol. Graph. Model. 111 108111

    Article  CAS  Google Scholar 

  52. Kordzadeh A, Amjad-Iranagh S, Zarif M and Modarress H 2019 J. Mol. Graph. Model. 88 11

    Article  CAS  Google Scholar 

  53. Madani S Y, Naderi N, Dissanayake O, Tan A and Seifalian A M 2011 Int. J. Nanomed. 6 2963

    CAS  Google Scholar 

  54. Pastorin G, Wu W, Wieckowski S, Briand J P, Kostarelos K, Prato M et al 2006 Chem. Commun. 11 1182

    Article  Google Scholar 

  55. Wang C, Zhang L, Jiang Y, Zhang M, Liu L and Ye D 2021 Physica E Low Dimens. Syst. Nanostruct. 134 114892

    Article  CAS  Google Scholar 

  56. Hilder T A and Hill J M 2008 Curr. Appl. Phys. 8 258

    Article  Google Scholar 

  57. Bianco A, Kostarelos K and Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    Article  CAS  Google Scholar 

  58. He B, Hou F, Ren C, Bing P, Xiao X 2021 Front. Oncol. 11 711225 https://doi.org/10.3389/fonc.2021.711225

    Article  Google Scholar 

  59. Wu Q, Hu Z, Wang X, Lu Y, Chen X, Xu H et al 2003 J. Am. Chem. Soc. 125 10176

    Article  CAS  Google Scholar 

  60. Beshkova M and Yakimova R 2020 Vacuum 176 109231

    Article  CAS  Google Scholar 

  61. Wang Z, Wang G, Liu X, Wang S, Wang T, Zhang S et al 2021 J. Mater. Chem. C 9 17201

    Article  CAS  Google Scholar 

  62. Beheshtian J, Baei M T, Peyghan A A and Bagheri Z 2013 J. Mol. Model. 19 943

    Article  CAS  Google Scholar 

  63. Ouyang T, Qian Z, Ahuja R and Liu X 2018 Appl. Surface Sci. 439 196

    Article  CAS  Google Scholar 

  64. Grimme S 2004 J. Comput. Chem. 25 1463

    Article  CAS  Google Scholar 

  65. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H et al 1993 J. Comput. Chem. 14 1347

    Article  CAS  Google Scholar 

  66. Check C E, Faust T O, Bailey J M, Wright B J, Gilbert T M and Sunderlin L S 2001 J. Phys. Chem. A 105 8111

    Article  CAS  Google Scholar 

  67. O’Boyle N, Tenderholt A and Langner K 2008 J. Comput. Chem. 29 839

    Article  Google Scholar 

  68. Gilowski M, Wendrich T, Müller T, Jentsch C, Ertmer W, Rasel E et al 2008 Phys. Rev. Lett. 100 030201

    Article  CAS  Google Scholar 

  69. Peyghan A A, Baei M T and Hashemian S 2013 J. Clust. Sci. 24 341

    Article  CAS  Google Scholar 

  70. Noei M and Peyghan A A 2013 J. Mol. Model. 19 3843

    Article  CAS  Google Scholar 

  71. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  72. Miertuš S, Scrocco E and Tomasi J 1981 Chem. Phys. 55 117

    Article  Google Scholar 

  73. Miertuš S and Tomasi J 1982 Chem. Phys. 65 239

    Article  Google Scholar 

  74. Pascual-Ahuir J L, Silla E and Tuñón I 1994 J. Comput. Chem. 15 1127

    Article  CAS  Google Scholar 

  75. Wu X, Yang J, Hou J and Zhu Q 2004 J. Chem. Phys. 121 8481

    Article  CAS  Google Scholar 

  76. Esrafili M D and Behzadi H 2013 Struct. Chem. 24 573

    Article  CAS  Google Scholar 

  77. Azam M A, Alias F M, Tack L W, Seman R N A R and Taib M F M 2017 J. Mol. Graph Model. 75 85

    Article  CAS  Google Scholar 

  78. Deng Z Y, Zhang J M and Xu K W 2016 Phys. E Low Dimens. Syst. Nanostruct. 76 47

    Article  CAS  Google Scholar 

  79. Ouyang T, Qian Z, Hao X, Ahuja R and Liu X 2018 Appl. Surf. Sci. 462 615

    Article  CAS  Google Scholar 

  80. Noei M, Salari A A, Ahmadaghaei N, Bagheri Z and Peyghan A 2013 C R Chim. 16 985

    Article  CAS  Google Scholar 

  81. Mohammadi R, Hosseinian A, Khosroshahi E S, Edjlali L and Vessally E 2018 Phys. E Low Dimens. Syst. Nanostruct. 98 53

    Article  CAS  Google Scholar 

  82. Hoseininezhad-Namin M S, Rahimpour E, Ozkan S A, Pargolghasemi P and Jouyban 2022 J. Mol. Liq. 353 118750

    Article  CAS  Google Scholar 

  83. Soltani A, Sousaraei A, Mirarab M and Balakheyli H 2017 J. Saudi Chem. Soc. 21 270

    Article  CAS  Google Scholar 

  84. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S and De Milito A 2009 J. Biol. Chem. 284 34211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CY., Yadav, A., Mohealdeen, S.M. et al. Computational quantum mechanical investigation of the functionalized AlN nanotube as the smart carriers for levodopa drug delivery: a DFT analysis. Bull Mater Sci 47, 10 (2024). https://doi.org/10.1007/s12034-023-03079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03079-y

Keywords

Navigation