Skip to main content
Log in

Real-time photothermal degradation of methylene blue dye by CuS thin film grown using a fully automated spray pyrolysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The real-time photothermal degradation of methylene blue (MB) dye was studied using CuS thin film (TF) as a photocatalyst. The polycrystalline CuS TFs were fabricated on precleaned glass substrates by an aqueous solution of copper chloride and thiourea using a fully automated spray pyrolysis technique by varying temperatures (250–400°C). The properties of deposited films were studied by XRD, SEM, UV–Vis–NIR spectroscopy, photoluminescence (PL) and Hall measurement. XRD results show that the CuS TFs crystallized in the cubic phase with an average crystallite size ~22–30 nm. CuS TF grown at higher temperatures (350°C, 400°C) exhibited very low strain of about 0.55 and 1%, respectively. Hall study revealed that films deposited at 400°C had good electrical parameters with mobility (μ) of 0.866 cm2 V−1 s−1, Carrier concentration (p) of 5.21 × 1019 cm−3 and conductivity (σ) of 49.4 Ω-cm−1. The estimated optical bandgap of films were found to be in the range of 2.10–2.26 eV, revealing blue shift due to quantum size effects. The PL spectra showed two characteristic bands of the CuS films, at 422 nm and an intense green band at 504 nm. The copper sulphide TF showed high photocatalytic activities in a photo-decolourization of MB dye under irradiation of visible light, as CuS TF was able to completely decompose the dye in 160 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sharma M, Jain T, Singh S and Pandey O P 2012 Sol. Energy 86 626

    Article  CAS  Google Scholar 

  2. Wang C, Ao Y, Wang P, Zhang S, Qian J and Hou J 2010 Appl. Surf. 236 4125

    Article  Google Scholar 

  3. He T, Ma H, Zhou Z, Xu W, Ren F and Shi Z 2009 Polym. Degrad. Stabil. 94 2251

    Article  CAS  Google Scholar 

  4. Wang X, Liu G, Lu G Q and Cheng H M 2010 Int. J. Hydrogen Energ. 35 8199

    Article  CAS  Google Scholar 

  5. Andrade G R S, Nascimento C C, Neves E C, Barbosa C D A E S, Costa L P and Barreto L S 2012 J. Hazard. Mater. 203–204 151

    Article  Google Scholar 

  6. Li Y, He X and Cao M 2008 Mater. Res. Bull. 43 3100

    Article  CAS  Google Scholar 

  7. Vineetha M N, Matheswaran M and Sheeba K N 2012 Sol. Energy 91 368

    Article  Google Scholar 

  8. Lang X, Chen X and Zhao J 2014 Chem. Soc. Rev. 43 473

    Article  CAS  Google Scholar 

  9. Janin T, Goetz V, Brosillon S and Plantard G 2013 Sol. Energ. 87 127

    Article  CAS  Google Scholar 

  10. He W, Jia H, Xi L, Lei Y, Li J, Zhao H et al 2012 Nanoscale 4 3501

    Article  CAS  Google Scholar 

  11. Feng X, Li Y, Liu H, Li Y, Cui S, Wang N et al 2007 Nanotechnology 18 145706

    Article  Google Scholar 

  12. Cheng Z, Wang S, Wang Q and Geng B 2010 Cryst. Eng. Commun. 12 144

    Article  CAS  Google Scholar 

  13. Zhu T, Xia B, Zhou L and Lou X W 2012 J. Mater. Chem. 22 7851

    Article  CAS  Google Scholar 

  14. Wu C, Yu S H, Chen S, Liu G and Liu B 2006 J. Mater. Chem. 16 3326

    Article  CAS  Google Scholar 

  15. Cao H, Qian X, Wang C, Ma X, Yin J and Zhu Z 2005 J. Am. Chem. Soc. 127 16024

    Article  CAS  Google Scholar 

  16. Tanveer M, Cao C, Ali Z, Aslam I, Idrees F, Khan W S et al 2014 Cryst. Eng. Commun. 16 5290

    Article  CAS  Google Scholar 

  17. Zhuang T T, Fan F J, Gong M and andYu S H, 2012 Chem. Commun. 48 9762

    Article  CAS  Google Scholar 

  18. Freymeyer N J, Cunningham P D, Jones E C, Golden B J, Wiltrout A M and Plass K E 2013 Cryst. Growth Des. 13 4059

    Article  CAS  Google Scholar 

  19. Wei T, Liu Y, Dong W, Zhang Y, Huang C, Sun Y et al 2013 ACS Appl. Mater. Inter. 5 10473

    Article  CAS  Google Scholar 

  20. Zhao Y, Pan H, Lou Y, Qiu X, Zhu J J and Burda C 2009 J. Am. Chem. Soc. 131 4253

    Article  CAS  Google Scholar 

  21. Zhang F and Wong S S 2009 Chem. Mater. 21 4541

    Article  CAS  Google Scholar 

  22. Shawky A, El-Sheikh S M, Gaber A, El-Hout S I, El-Sherbiny I M and Ahmed A I 2020 Appl. Nanosci. 10 2153

    Article  CAS  Google Scholar 

  23. Wang X, He Y, Hu Y, Jin G, Jiang B and Huang Y 2018 Sol. Energy 170 586

    Article  CAS  Google Scholar 

  24. He Y B, Politya A, Osterreicher I, Psterer D, Gregor R, Meyer B K et al 2001 Physica B 308–310 1069

    Article  Google Scholar 

  25. Adelifard M, Eshghi H and Mohagheghi M M 2012 Appl. Surf. Sci. 258 5733

    Article  CAS  Google Scholar 

  26. Nomura R, Miyawaki K, Toyosaki T and Matsuda H 1996 Chem. Vap. Dep. 2 174

    Article  CAS  Google Scholar 

  27. Schneider S, Yang Y and Marks T J 2005 Chem. Mater. 17 4286

    Article  CAS  Google Scholar 

  28. Isac L, Duta A, Kriza A, Enesca I A and Nanu M 2007 J. Phys.: Conf. Series 61 477

    CAS  Google Scholar 

  29. Schneider S, Ireland R, Hersam M C and Marks T J 2007 Chem. Mater. 19 2780

    Article  CAS  Google Scholar 

  30. Yamamoto Y, Yamaguchi T, Tanaka T, Tanahashi N and Yoshida A 1997 Sol. Energy Mater. 49 399

    Article  CAS  Google Scholar 

  31. Mukherjee N, Sinha A, Khan G G, Chandra D, Bhaumik A and Mondal A 2011 Mater. Res. Bull. 46 6

    Article  CAS  Google Scholar 

  32. Shu Q W, Lan J, Gao M X, Wang J and Huang C Z 2015 Cryst. Eng. Commun. 17 1374

    Article  CAS  Google Scholar 

  33. Srinivas B, Kumar B G and Muralidharan K 2015 J. Mol. Cat. A: Chem. 410 8

    Article  CAS  Google Scholar 

  34. Chaki S H, Deshpande M P, Chaudhary M D and Mahato K S 2013 Adv. Sci. Eng. Med. 5 285

    Article  CAS  Google Scholar 

  35. Bharathi B, Thanikaikarasan P, Kollu P V, Chandrasekar K, Sankaranarayanan S and Shajan S 2014 J. Mater. Sci.: Mater. Electron 25 5338

    CAS  Google Scholar 

  36. Mahmood K, Sankar S B and Suk J H 2014 Nanoscale 6 9127

    Article  CAS  Google Scholar 

  37. Patil S S, Bagade C S, Joshi M P, Kharade S D, Khot K K V, Mali S S et al 2018 J. Mater. Sci.: Mater. Electron. 29 19322

    CAS  Google Scholar 

  38. Abdelhady A L, Karthik Ramasamy K, Malik M Z, Paul O B, Haigh S J and Raftery J 2011 J. Mater. Chem. 21 17888

    Article  CAS  Google Scholar 

  39. Qin N, Wei W, Huang C and Mi L 2020 Catalysts 10 40

    Article  CAS  Google Scholar 

  40. Sahraei R, Noshadi S and Goudarzi A 2015 RSC Adv. 5 77354

    Article  CAS  Google Scholar 

  41. Mageshwari K, Mali S S, Hemalatha T, Sathyamoorthy R and Patil P S 2011 Prog. Solid State Chem. 39 108

    Article  CAS  Google Scholar 

  42. Goudarzi A, Namghi A D and Ha C S 2014 RSC Adv. 4 59764

    Article  CAS  Google Scholar 

  43. Chaki S H, Deshpande M P and Jiten P 2014 Thin Solid Films 550 291

    Article  CAS  Google Scholar 

  44. Soltani N, Saion E, Mahmood Mat Yunus W, Navasery M, Bahmanrokh G, Erfani M et al 2013 Sol. Energy 97 147

    Article  CAS  Google Scholar 

  45. Yang T H, De Huang L, Harn Y W, Lin C C, Chang J K, Wu C I et al 2013 Small 9 3169

    Article  CAS  Google Scholar 

  46. Adhikari S, Sarkar D and Madras G 2017 ACS Omega 2 4009

    Article  CAS  Google Scholar 

  47. Chong M N, Jin B, Chow C W K and Saint C 2010 Water Res. 44 2997

    Article  CAS  Google Scholar 

  48. Mi L, Wei W, Zheng Z, Gao Y, Liu Y, Chen W et al 2013 Nanoscale 5 6589

    Article  CAS  Google Scholar 

  49. Bramhaiah K, Bhuyan R, Mandal S, Kar S, Prabhu R, John N S et al 2021 J. Phys. Chem. C 125 4299

    Article  CAS  Google Scholar 

  50. Raj S I and Jaiswal A 2021 J. Photochem. Photobiol. A: Chem. 410 113158

    Article  CAS  Google Scholar 

  51. Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y and Pal Govind T 2010 Environ. Sci. Technol. 44 6313

    Article  CAS  Google Scholar 

  52. Kaiser A B, Cristina G N, Sundaram R S, Burghard M and Kern K 2009 Nano Lett. 9 1787

    Article  CAS  Google Scholar 

  53. Gan Z, Wu X, Meng M, Zhu X, Yang L and Chu P K 2014 ACS Nano 8 9304

    Article  CAS  Google Scholar 

  54. Wang F, Huang Y, Chai Z, Zeng M, Li Q, Wang Y et al 2015 Chem. Sci. 7 6887

    Article  Google Scholar 

  55. Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J and Serpone N 2001 J. Photochem. Photobiol. A Chem. 140 163

    Article  CAS  Google Scholar 

  56. Timko B P, Dvir T and Kohane D S 2010 Adv. Mater. 22 4925

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the continuous support from the Director, DMSRDE, and for his permission to publish this work. This work was funded by the Defence Research and Development Organization (DRDO), Ministry of Defence, Government of India, New Delhi (Project No. DRM-559). We thank the Department of Chemical Engineering of Banasthali Vidyapeeth, Rajasthan, for providing support to Pragati Mishra to complete her short project at DMSRDE, Kanpur. Help received from Mr R D Verma, Mr Dilip K Saha, Ram Sobit Saha and members of CAF Division, DMSRDE, Kanpur, during the experiments is very much appreciated. Thanks are due to IIT, Kanpur, for UV–Vis and TGA, SEM and XRD characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K Tripathi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 578 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.K., Mishra, P., Dwivedi, S.K. et al. Real-time photothermal degradation of methylene blue dye by CuS thin film grown using a fully automated spray pyrolysis. Bull Mater Sci 47, 2 (2024). https://doi.org/10.1007/s12034-023-03072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03072-5

Keywords

Navigation