Skip to main content
Log in

First-principles insight of hydrogen storage properties of mixed perovskite hydrides Na1–xKxMgH3 (\(\user2{ x} \le 0.75\user2{ })\)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The potential of hydrogen as an energy carrier has been widely recognized due to concerns about climate change, environmental degradation and energy security. However, the storage and transportation of hydrogen remain significant challenges. Hydrides with a perovskite crystal structure can store large amounts of hydrogen in a small volume, and they are relatively easy to produce hydrogen. Among them, the ternary perovskite hydride NaMgH3 is distinguished by its relatively high theoretical hydrogen storage densities and reversibility of hydrogen absorption and desorption. In this study, first-principles calculations within the framework of density functional theory were employed to investigate the effect of substituting Na+ by K+ on the structural, electronic and hydrogen storage properties of Na1–xKxMgH3 (\(x \le 0.75 )\). The results show that the substitution of Na+ by K+ induces a slight decrease in the lattice parameters and an increase in the cell volume, and the MgH6 octahedron becomes more distorted, which is a good indicator of destabilization of the host material, ultimately leading to a decrease in decomposition temperature from 560.1 to 489.6 K, which is beneficial for hydrogen storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chai W S, Bao Y, Jin P, Tang G and Zhou L 2021 Renew. Sustain. Energy Rev. 147 111254

    Article  CAS  Google Scholar 

  2. Liu W, Sun L, Li Z, Fujii M, Geng Y, Dong L et al 2020 Environ. Sci. Pollut. Res. 27 31092

    Article  CAS  Google Scholar 

  3. Wang Z M, Li J J, Tao S, Deng J Q, Zhou H and Yao Q 2016 J. Alloys Compd. 660 402

    Article  CAS  Google Scholar 

  4. Andrada-Chacón A, Alonso J A, Pomjakushin V and Sánchez-Benítez J 2017 J. Alloys Compd. 729 914

    Article  Google Scholar 

  5. Tao S, Wang Z M, Li J J, Deng J Q, Zhou H and Yao Q R 2016 Mater. Sci. Forum 852 502

    Article  Google Scholar 

  6. Sheppard D A, Paskevicius M and Buckley C E 2011 Chem. Mater. 23 4298

    Article  CAS  Google Scholar 

  7. Satyapal S, Petrovic J, Read C, Thomas G and Ordaz G 2007 Catal. Today 120 246

    Article  CAS  Google Scholar 

  8. Zhong H, Ouyang L Z, Ye J S, Liu J W, Wang H, Yao X D et al 2017 Energy Storage Mater. 7 222

    Article  Google Scholar 

  9. Chaudhary A, Paskevicius M, Sheppard D A and Buckley C E 2015 J. Alloys Compd. 623 109

    Article  CAS  Google Scholar 

  10. Kunkel N, Meijerink A, Springborg M and Kohlmann H 2014 J. Mater. Chem. C 2 4799

    Article  CAS  Google Scholar 

  11. Li Y, Zhang L, Zhang Q, Fang F, Sun D, Li K et al 2014 J. Phys Chem C 118 23635

    Article  CAS  Google Scholar 

  12. Wang Z, Tao S, Deng J, Zhou H and Yao Q 2017 Int. J. Hydrogen Energy 42 8554

    Article  CAS  Google Scholar 

  13. Li Y, Mi Y, Chung J S and Kang S G 2018 Int. J. Hydrogen Energy 3 2232

    Article  Google Scholar 

  14. Xiao X B, Tang B Y, Liao S Q, Peng L M and Ding W Jiang 2009 J. Alloys Compd. 474 522

  15. Tao S, Wang Z and min, Wan Z zhen, Deng J Qiu, Zhou H and Yao Q, 2017 Int. J. Hydrogen Energy 42 3716

    Article  CAS  Google Scholar 

  16. Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 WIEN2k (Technische Universität Wien, Austria)

    Google Scholar 

  17. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  18. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 5

    Google Scholar 

  19. Murnaghan F D 1924 J. Franklin Inst. 30 244

    Google Scholar 

  20. Vajeeston P, Ravindran P and Fjellv H 2007 J. Alloys Compd. 447 44

    Article  Google Scholar 

  21. Contreras Vasquez L F, Liu Y, Paterakis C, Reed D and Book D 2017 Int. J. Hydrogen Energy 42 22589

    Article  CAS  Google Scholar 

  22. Züttel A, Remhof A, Borgschulte A and Friedrichs O 2010 Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 3329

  23. Boussami S, Khaldi C, Lamloumi J, Mathlouthi H and Takenouti H 2012 Electrochim. Acta 69 203

    Article  CAS  Google Scholar 

  24. Li Y, Chung J S and Kang S G 2019 Comb. Sci 21 736

    Article  CAS  Google Scholar 

  25. Chaib H, Mohammedi L, Benmebrouk L, Boukraa A, Daoudi B and Achouri A 2020 Int. J. Hydrogen Energy 45 28920

    Article  CAS  Google Scholar 

  26. Zhou C, Bowman R C, Fang Z Z, Lu J, Xu L, Sun P et al 2019 ACS Appl. Mater. Interfaces 11 38868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Chami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chami, R., Lekdadri, A., Baaddi, M. et al. First-principles insight of hydrogen storage properties of mixed perovskite hydrides Na1–xKxMgH3 (\(\user2{ x} \le 0.75\user2{ })\). Bull Mater Sci 46, 190 (2023). https://doi.org/10.1007/s12034-023-03035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03035-w

Keywords

Navigation