Skip to main content
Log in

Flame synthesis of Fe3O4/Fe2O3 on stainless steel grid surfaces to improve anodic electrochemical properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Stainless steel (SS) is attractive, easy to handle, cost-effective and offers several advantages (i.e., conductivity, durability, commercial availability) to make anodes. However, the presence of some iron oxides (mainly Fe2O3) on the SS surface improves electron transfer for potential use as an anode in sediment microbial fuel cells. Although several procedures are available to synthesize Fe2O3 on SS surfaces, most of them involve several careful steps, taking time (several hours or days) from start to finish. Fortunately, iron oxides can be synthesized on the SS surface quickly and very easily. Flame synthesis of iron oxides is a straightforward process, and it can be scalable. Using this procedure, two types of SS-grids 304 (wire diameters of 100 μm and 230 μm) material acquired from a common hardware store were flamed, forming Fe2O3 on their surface. Under different conditions (polished, polished then flamed, flamed) SS-grid (SSg) specimens were studied. All specimen surfaces were characterized by field emission scanning electron microscopy combined with X-rays chemical analysis. The chemical information of the iron oxides formed on the surface was obtained by X-ray diffractometer. The electrochemical responses of modified SSg pieces were assessed by cyclic voltammetry, and finally, their resistances were assessed by electrochemical impedance spectroscopy. An equivalent circuit was included to describe the electrode–electrolyte interface. The best electroactive area with small resistance in the electrode–electrolyte interface corresponds to the flamed SS grid (wire diameters of 100 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Prasad J and Tripathi R K 2020 J. Power Sources 450 227721

    Article  CAS  Google Scholar 

  2. Hamdan H Z, Salam D A, Hari A R, Semerjian L and Saikaly P 2017 Sci. Total Environ. 575 1453

    Article  CAS  Google Scholar 

  3. Li X, Zheng R, Zhang X, Liu Z, Zhu R, Zhang X et al 2019 J. Environ. Manag. 235 70

    Article  CAS  Google Scholar 

  4. Sharma M, Aryal N, Sarma P M, Vanbroekhoven K, Lal B, Dominguez Benetton X et al 2013 Chem. Commun. 49 6495

    Article  CAS  Google Scholar 

  5. Flimban S G A, Ismail I M I, Kim T and Oh S-E 2019 Energies 12 3390

    Article  CAS  Google Scholar 

  6. Mukherjee P and Saravanan P 2019 ChemistrySelect 4 1601

    Article  CAS  Google Scholar 

  7. Logan B E and Regan J M 2006 Trends Microbiol. 14 512

    Article  CAS  Google Scholar 

  8. Hindatu Y, Annuar M S M and Gumel A M 2017 Renew. Sustain. Energy Rev. 73 236

    Article  CAS  Google Scholar 

  9. Kerzenmacher S 2019 Adv. Biochem. Eng. Biotechnol. 167 135

    CAS  Google Scholar 

  10. Kumar G G, Sarathi V G S and Nahm K S 2013 Biosens. Bioelectron. 43 461

    Article  CAS  Google Scholar 

  11. Scott K, Rimbu G A, Katuri K P, Prasad K K and Head I M 2007 Process Saf. Environ. Prot. 85 481

    Article  CAS  Google Scholar 

  12. Le Huong T X, Bechelany M and Cretin M 2017 Carbon 122 564

    Article  Google Scholar 

  13. Li S, Cheng C and Thomas A 2017 Adv. Mater. 29 1

    Google Scholar 

  14. Ouitrakul S, Sriyudthsak M, Charojrochkul S and Kakizono T 2007 Biosens. Bioelectron. 23 721

    Article  CAS  Google Scholar 

  15. Tanisho S, Kamiya N and Wakao N 1989 J. Electroanal. Chem. 275 25

    Article  Google Scholar 

  16. Mehanna M, Basséguy R, Délia M L and Bergel A 2009 Corros. Sci. 51 2596

    Article  CAS  Google Scholar 

  17. Pocaznoi D, Calmet A, Etcheverry L, Erable B and Bergel A 2012 Energy Environ. Sci. 5 9645

    Article  CAS  Google Scholar 

  18. Erable B and Bergel A 2009 Bioresour. Technol. 100 3302

    Article  CAS  Google Scholar 

  19. Ketep S F, Bergel A, Calmet A and Erable B 2014 Energy Environ. Sci. 7 1633

    Article  CAS  Google Scholar 

  20. Lamp J L, Guest J S, Naha S, Radavich K A, Love N G, Ellis M W et al 2011 J. Power Sources 196 5829

    Article  CAS  Google Scholar 

  21. Tang Y, Bi X, Sun H, Fu J, Peng M and Zou H 2011 Adv. Mater. Res. 156–157 742

    Article  Google Scholar 

  22. Dumas C, Basseguy R and Bergel A 2008 Electrochim. Acta 53 5235

    Article  CAS  Google Scholar 

  23. Lowy D A, Tender L M, Zeikus J G, Park D H and Lovley D R 2006 Biosen. Bioelectron. 21 2058

    Article  CAS  Google Scholar 

  24. Park I H, Christy M, Kim P and Nahm K S 2014 Biosens. Bioelectron 58 75

    Article  CAS  Google Scholar 

  25. Okamoto A, Hashimoto K and Nakamura R 2012 Bioelectrochemistry 85 61

    Article  CAS  Google Scholar 

  26. Ji J, Jia Y, Wu W, Bai L, Ge L and Gu Z 2011 Colloids Surfaces A Physicochem. Eng. Asp. 390 56

    Article  CAS  Google Scholar 

  27. Peng X, Yu H, Wang X, Gao N, Geng L and Ai L 2013 J. Power Sources 223 94

    Article  CAS  Google Scholar 

  28. Wang Q and Wang Y 2016 ACS Appl. Mater. Interfaces 8 10334

    Article  CAS  Google Scholar 

  29. Long X, Cao X, Wang C, Liu S and Li X 2019 J. Electroanal. Chem. 855 113497

    Article  CAS  Google Scholar 

  30. Betz G, Wehner G K, Toth L and Joshi A 1974 J. Appl. Phys. 45 5312

    Article  CAS  Google Scholar 

  31. Saeki I, Konno H, Furuichi R, Nakurama T, Mabuchi K and Itoh M 1998 Corros. Sci. 40 191

    Article  CAS  Google Scholar 

  32. Guo K, Donose B C, Soeriyadi A H, Prévoteau A, Patil S A, Freguia S et al 2014 Environ. Sci. Technol. 48 7151

    Article  CAS  Google Scholar 

  33. Yamashita T, Ishida M, Asakawa S, Kanamori H, Sasaki H, Ogino A et al 2016 Biotechnol. Biofuels 9 1

    Article  Google Scholar 

  34. Hauffe 1966 (eds) High temperature oxidation of metals (New York: John Wiley) https://doi.org/10.1002/maco.19670181017

  35. Fujishima A, Zhang X and Tryk D A 2008 Surf. Sci. Rep. 63 515

    Article  CAS  Google Scholar 

  36. Yuan X-Z, Song C, Wang H and Zhang J 2010 (eds) Electrochemical impedance spectroscopy in PEM fuel cells. Fundamentals and applications (London: Springer-Verlag). https://doi.org/10.1007/978-1-84882-846-9_2

  37. Es-Souni M, Es-Souni M and Fischer-Brandies H 2002 Biomaterials 23 2887

    Article  CAS  Google Scholar 

  38. Kumar S and Sankara Narayanan T S N 2011 J. Appl. Electrochem. 41 123

    Article  CAS  Google Scholar 

  39. Parsons R 1990 Chem. Rev. 90 813

    Article  CAS  Google Scholar 

  40. Selman J R and Lin Y P 1993 Electrochim. Acta 38 2063

    Article  CAS  Google Scholar 

  41. Yin M-Y, Li Z, Xiao Z, Pang Y, Li Y-P and Shen Z-Y 2021 Trans. Nonferrous Met. Soc. China 31 1012

    Article  CAS  Google Scholar 

  42. Solmaz R, Kardaş G, Çulha M, Yazıcı B and Erbil M 2008 Electrochim. Acta 53 5941

    Article  CAS  Google Scholar 

  43. Guo X-P and Tomoe Y 1998 Corrosion 54 93

    Article  Google Scholar 

  44. Guo K, Soeriyadi A H, Feng H, Prévoteau A, Patil A S, Gooding J J et al 2015 Bioresour. Technol. 195 46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Alvarez-Gallegos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Martínez, S., Pineda-Arellano, C.A., López-Sesenes, R. et al. Flame synthesis of Fe3O4/Fe2O3 on stainless steel grid surfaces to improve anodic electrochemical properties. Bull Mater Sci 46, 195 (2023). https://doi.org/10.1007/s12034-023-03034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03034-x

Keywords

Navigation