Skip to main content
Log in

A molecular insight into formation of deep eutectic solvents and their application for the enhancement of proton transportation via graphene oxide-based proton exchange membranes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The new electrolytes (ethylene glycol (EGL)- and sodium halide-based deep eutectic solvents (DESs)) could enable us to solve the chemical instability and proton transportation problems of proton exchange membrane (PEM) under harsh operating conditions, which is related to the hydroperoxyl or hydroxyl radical’s formations that will attack on the backbones and side chains of PEM. In this regard, the intermolecular interaction of EGL- and sodium chloride-based DES and then its application for the transportation of proton in graphene oxide (GO) based membrane was studied via the classical all-atom molecular dynamics (MD) simulations. The MD results revealed that the decrease in radial distribution function peak height and number of hydrogen bonding per molecule between EGL, and the formation of new intermolecular interaction between EGL/sodium chloride after the addition of DES components at 298 and 350 K, respectively. Next, the modelling and simulations of the GO and hydronium ion were investigated to mimic the transportation process of hydronium ion via PEM in the absence and presence of EGL- and sodium chloride-based DES. In the absence of DES, the results implied that the hydronium ion diffusion coefficient and the diffusion coefficients of water molecules are similar, because vehicular diffusion mechanism needs synchronized diffusion of both species (water and hydronium ion) at hydration level (\(\lambda \)) 3. Moreover, the transportation of proton increased monotonically as an increase of \(\lambda \) at 298 and 350 K, respectively. Next, in the presence of EGL- and sodium chloride-based DES electrolyte in GO-based proton exchange membrane yielded improved mobility of hydronium ions at higher temperature (350 K), which could mean that DES could be a promising alternative as an electrolyte for PEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

REFERENCES

  1. Madheswaran D K and Jayakumar A 2021 Bull. Mater. Sci. 44 1

    Article  Google Scholar 

  2. Hamrock S J and Yandrasits M A 2006 J. Macromol. Sci. Polym. Rev. 46 219

    Article  CAS  Google Scholar 

  3. Peighambardoust S J, Rowshanzamir S and Amjadi M 2010 Int. J. Hydrog. Energy 35 9349

    Article  CAS  Google Scholar 

  4. Devanathan R 2008 Energy Environ. Sci. 1 101

    Article  CAS  Google Scholar 

  5. Li Q, Jensen J O, Savinell R F and Bjerrum N J 2009 Prog. Polym. Sci. 34 449

    Article  CAS  Google Scholar 

  6. Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K T and Lee J H 2011 Prog. Polym. Sci. 36 813

    Article  CAS  Google Scholar 

  7. Kim J, Lee S M, Srinivasan S and Chamberlin C E 1995 J. Electrochem. Soc. 142 2670

    Article  CAS  Google Scholar 

  8. Nguyen T V and White R E 1993 J. Electrochem. Soc. 140 2178

    Article  CAS  Google Scholar 

  9. Hickner M A, Ghassemi H, Kim Y S, Einsla B R and McGrath J E 2004 Chem. Rev. 104 4587

    Article  CAS  Google Scholar 

  10. Hickner M A and Pivovar B S 2005 Fuel cells 5 213

    Article  CAS  Google Scholar 

  11. Cheddie D and Munroe N 2005 J. Power Sourc. 147 72

    Article  CAS  Google Scholar 

  12. Sahu A K, Pitchumani S, Sridhar P and Shukla A K 2009 Bull. Mater. Sci. 32 285

    Article  CAS  Google Scholar 

  13. Beattie P D, Orfino F P, Basura V I, Zychowska K, Ding J, Chuy C et al 2001 J. Electroanal. Chem. 503 45

    Article  CAS  Google Scholar 

  14. Zhang L, Chae S R, Hendren Z, Park J S and Wiesner M R 2012 Chem. Eng. J. 204 87

    Article  Google Scholar 

  15. Gao W, Wu G, Janicke M T, Cullen D A, Mukundan R, Baldwin J K et al 2014 Angew. Chem. Int. Ed. 53 3588

    Article  CAS  Google Scholar 

  16. Karimi M B, Mohammadi F and Hooshyari K 2020 J. Membr. Sci. 611 118217

    Article  CAS  Google Scholar 

  17. Abbott A P, Alabdullah S S, Al-Murshedi A Y and Ryder K S 2018 Faraday Discuss. 206 365

    Article  CAS  Google Scholar 

  18. Sedghamiz M A and Raeissi S 2018 J. Mol. Liq. 269 694

    Article  CAS  Google Scholar 

  19. Karibayev M and Shah D 2020 Energy Fuels 34 9894

    Article  CAS  Google Scholar 

  20. Li Q, Qian H, Fu X, Sun H and Sun J 2021 Bull. Mater. Sci. 44 1

    Article  CAS  Google Scholar 

  21. Satapathy S, Pawar S, Gupta P K and Varma K B R 2011 Bull. Mater. Sci. 34 727

    Article  CAS  Google Scholar 

  22. Shah D, Karibayev M, Adotey E K and Torkmahalleh A M 2020 Sci. Rep. 10 1

    Article  Google Scholar 

  23. Majumder S, Matin M A, Sharif A and Arafat M T 2019 Bull. Mater. Sci. 42 171

    Article  Google Scholar 

  24. Pramod K and Gangineni R B 2015 Bull. Mater. Sci. 38 1093

    Article  CAS  Google Scholar 

  25. Housaindokht M R, Monhemi H, Hosseini H E, Googheri M S S, Najafabadi R I, Ashraf N et al 2013 J. Mol. Liq. 187 30

    Article  CAS  Google Scholar 

  26. Oostenbrink C, Soares T A, Van der Vegt N F and Van Gunsteren W F 2005 Eur. Biophys. J. 34 273

    Article  CAS  Google Scholar 

  27. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701

    Article  Google Scholar 

  28. Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33

    Article  CAS  Google Scholar 

  29. Hub J S, Wolf M G, Caleman C, Maaren P J, Groenhof G and Van Der Spoel D 2014 Chem. Sci. 5 1745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan via Grant no. AP14871389 ‘Development of the scientific basis of the nanomembrane fabrication technology for proton separation in a fuel cell’. We acknowledge the support of International Science Complex Astana for providing us with computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurlan Almas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aimaganbetov, K., Ospanov, K. & Almas, N. A molecular insight into formation of deep eutectic solvents and their application for the enhancement of proton transportation via graphene oxide-based proton exchange membranes. Bull Mater Sci 46, 194 (2023). https://doi.org/10.1007/s12034-023-03029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03029-8

Keywords

Navigation