Skip to main content
Log in

Investigations on the electric and dielectric response in CaMnO3–δ perovskite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The effect of frequency and temperature on the permittivity and transport properties of calcium manganese was investigated. The sample was synthesized using a simple, an economic and a reproducible complex polymerizable route. Thereafter, it was characterized by the X-ray diffraction and complex impedance spectroscopy techniques. The obtained results showed that CaMnO3–δ exhibits a semiconducting behaviour between room temperature and 400°C. Beyond that temperature, the perovskite behaves as a metal. As for the activation energy, it showed a change around 400°C, which is attributed to the first-order transition from semiconducting to the metallic behaviour. Moreover, the dielectric constant and the loss exhibited a decreasing trend with increasing frequency, which is a characteristic of polar dielectrics. Between 25 and 400°C, the maximum barrier height increased from 0.1 to 0.32 eV. The low dissipation factor at high frequencies seems to be an interesting feature highlighting the promising use of CaMnO3–δ in high-frequency microwave device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Sikalidis C 2011 Advances in ceramics-electric and magnetic ceramics, bioceramics, ceramics and environment 3rd edn.  (Croatia: InTech.)

    Book  Google Scholar 

  2. Samuvel K and Ramachandran K 2015 Spectrochim. Acta A 136 437

    Article  CAS  Google Scholar 

  3. Granado E, Ling C D, Neumeier J J, Lynn J W and Argyriou D N 2003 Phys. Rev. B 68 134440

    Article  Google Scholar 

  4. Wang Y, Sui Y, Wang X and Su W J 2009 Phys. D Appl. Phys. 42 055010

    Article  Google Scholar 

  5. Macan J, Brleković F, Kralj S, Supina A, Gracin D, Šantić A et al 2020 Ceram. Inter. 46 18200

    Article  CAS  Google Scholar 

  6. Mouyane M, Itaalit B, Bernard J, Houivet D and Noudem J G 2014 Powder Technol. 264 71

    Article  CAS  Google Scholar 

  7. Torres S O A, Thomazini D, Balthazar G P and Gelfuso M V 2020 Mater. Res. 23 5

    Google Scholar 

  8. Cabello A, Abad A, Gayan P, García-Labiano F, Diego L F and Adanez J 2021 Appl. Energy 287 116557

    Article  CAS  Google Scholar 

  9. Liu T, Chen J, Li M, Han G, Liu C, Zhou D et al 2021 Chem. Eng. J. 408 127364

    Article  CAS  Google Scholar 

  10. Berbeth Mary S, Francis M, Sathe V G, Ganesan V and Leo Rajesh A 2019 Physica B 575 411707

    Article  Google Scholar 

  11. Andoulsi-Fezei R, Sdiri N, Horchani-Naifer K and Férid M 2018 Spectrochem. Acta A 205 214

    Article  CAS  Google Scholar 

  12. Andoulsi-Fezei R, Sdiri N, Horchani-Naifer K and Férid M 2020 J. Asian Ceram. Soc. 8 94

    Article  Google Scholar 

  13. Andoulsi-Fezei R, Horchani-Naifer K and Férid M 2021 Eur. Phys. J. Plus 136 791

    Article  CAS  Google Scholar 

  14. Tadić M, Marković D, Panjan M and Spasojević V 2016 Ceram. Inter. 42 19365

    Article  Google Scholar 

  15. Sotoudeh M, Rajpurohit S, Blöchl P, Mierwaldt D, Norpoth J, Roddatis V et al 2017 Phys. Rev. B 95 235150

    Article  Google Scholar 

  16. Zhang F P, Zhang X, Lu Q M, Zhang J X and Liu Y Q 2011 J. Alloys Compd. 509 4171

    Article  CAS  Google Scholar 

  17. Andoulsi R, Horchani-Naifer K and Férid M 2012 Cerâmica 58 126

    Article  CAS  Google Scholar 

  18. Sen S, Choudhary R N P, Tarafdar A and Pnamamik P 2006 J. Appl. Phys. 99 24114

    Article  Google Scholar 

  19. Souza J A, Neumeier J J, Bollinger R K, McGuire B, dos Santos C A M and Terashita H 2007 Phys. Rev. B 76 024407

    Article  Google Scholar 

  20. Sumi S, Prabhakar Rao P, Mahesh S K and Koshy P 2012 Mater. Res. Bull. 47 4365

    Article  CAS  Google Scholar 

  21. Ben Jazia Kharrat A, Moutia N, Khirouni K and Boujelben W 2018 Mater. Res. Bull. 105 75

    Article  CAS  Google Scholar 

  22. Mguedla R, Ben Kharrat A, Moutia N, Khirouni K, Chniba-Boudjada N and Boujelben W 2020 J. Alloys Compd. 836 155186

    Article  CAS  Google Scholar 

  23. Debye P 1929 Polar molecules 3rd edn. (New York: Chemical Catalogue Company)

    Google Scholar 

  24. Menczel J D and Prime R B 2014 Thermal analysis of polymers, fundamental and applications 1st edn. (Somerset: Wiley)

    Google Scholar 

  25. Azulay A, Wahabi M, Natanzon Y, Kauffmann Y and Amouyal Y 2020 Appl. Mater. Inter. 12 49768

    Article  CAS  Google Scholar 

  26. Datta R, Kalyan Pradhan S, Majumdar S and Kumar S 2020 J. Phys. Condens. Matter 32 495702

    Article  CAS  Google Scholar 

  27. Datta R, Kalyan Pradhan S, Chatterjee S, Majumdara S and De Kumar S 2021 J. Alloys Compd. 876 160158

    Article  CAS  Google Scholar 

  28. Laokul P, Thongbai P, Yamwong T and Maensiri S 2012 J. Supercond. Nov. Magn. 25 1195

    Article  CAS  Google Scholar 

  29. Deng J, Han F, Schwarz B, Knapp M, Ehrenberg H, Hua W et al 2021 Inorg. Chem. 60 6999

    Article  CAS  Google Scholar 

  30. Sousa D, Nunes M R, Silveira C, Matos I, Lopes A B and Melo Jorge M E 2008 Mater. Chem. Phys. 109 311

    Article  CAS  Google Scholar 

  31. Melo Jorge M E, Nunes M R, Silva Maria R and Sousa D 2005 Chem. Mater. 17 2069

    Article  Google Scholar 

  32. Attar A S, Sichani E S and Sharafi S 2017 J. Mater. Res. Technol. 6 108

    Article  Google Scholar 

  33. Aliyu H D, Alonso J M, Presa P, Pottker W E, Ita B, Garcia-Hernandez M et al 2018 Chem. Mater. 30 7138

    Article  CAS  Google Scholar 

  34. Moss R and Hardtl K H 1996 J. Appl. Phys. 80 393

    Article  Google Scholar 

  35. Sharmaa A and Mehta N 2017 RSC Adv. 7 19085

    Article  Google Scholar 

  36. Jonscher A K 1983 Dielectric relaxation in solid 2nd edn. (London: Dielectrics Press)

    Google Scholar 

  37. Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z and Gruszka I 2005 J. Phys. D Appl. Phys. 38 1450

    Article  CAS  Google Scholar 

  38. Rayssi Ch, El. Kossi S, Dhahri J and Khirouni K 2018 RSC Adv. 8 17139

    Article  CAS  Google Scholar 

  39. Abdel-Aziz M M, Afifi M A, Labib H H and El-Metwally E G 2000 Acta Phys. Pol. A 98 393

    Article  CAS  Google Scholar 

  40. Stevels J M 1997 The electrical property of glasses 2nd edn.  (Berlin: Springer)

    Google Scholar 

  41. Guintini J C, Zanchetta J V, Jullen D, Eholle R and Hoenou P 1981 J. Non-Cryst. Solids 45 57

    Article  Google Scholar 

  42. Elliott S R 1978 Solid State Commun. 27 749

    Article  CAS  Google Scholar 

  43. Singh L, Rai U S and Mandal K D 2013 J. Alloys Compd. 555 176

    Article  CAS  Google Scholar 

  44. Singh L, Ill Won Kim, Cheol Sin B, Ullah A, Kook Woo S and Lee Y 2015 Mater. Sci. Semicond. Process 31 386

    Article  CAS  Google Scholar 

  45. Pozar D M 2012 Microwave engineering 4th edn. (New York: Wiley)

    Google Scholar 

  46. Wang C C, Lei C M, Wang G J, Sun X H, Li T, Huang S G et al 2013 J. Appl. Phys. 113 094103

    Article  Google Scholar 

  47. Ambrus J H, Moynihan C T and Macedo P B 1972 J. Phys. Chem. 76 3287

    Article  CAS  Google Scholar 

  48. Chandra Sekhar K S K R, Mahesh M L V, Sreenivasu T, Rama Krishna Y, Chandra Mouli K and Tirupathi P 2021 J. Mater. Sci. Mater. Elec. 32 8628

    Article  CAS  Google Scholar 

  49. Manzoor S, Husain S, Somvanshi A and Fatema M 2020 J. Appl. Phys. 128 064101

    Article  CAS  Google Scholar 

  50. Singh G, Tiwari V S and Gupta P K 2010 J. Appl. Phys. 107 064103

    Article  Google Scholar 

  51. Warren W L, Vanheusden K, Dimos D, Pike G E and Tuttle B A 1996 J. Am. Ceram. Soc. 79 536

    Article  CAS  Google Scholar 

  52. Xie X M, Chen T G and Wu Z L 1989 Phys. Rev. B 40 4549

    Article  CAS  Google Scholar 

  53. Shanming Ke S, Li T, Ye M, Lin P, Yuan W, Zeng X et al 2017 Sci. Rep. 7 10144

    Article  Google Scholar 

  54. Thomas A K, Abraham K, Thomas J and Saban K V 2017 J. Asian Ceram. Soc. 5 56

    Article  Google Scholar 

  55. Sinclair D C and West A R 1989 J. Appl. Phys. 66 3850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Ministry of Higher Education and Scientific Research of Tunisia for providing us the necessary equipment to perform this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refka Andoulsi-Fezei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andoulsi-Fezei, R., Horchani-Naifer, K. Investigations on the electric and dielectric response in CaMnO3–δ perovskite. Bull Mater Sci 46, 177 (2023). https://doi.org/10.1007/s12034-023-03018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03018-x

Keywords

Navigation