Skip to main content
Log in

Photo-switching and conductive properties of polymeric deep eutectic solvent-based tungsten oxide–zinc oxide nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The photo-switching of inorganic functional materials is receiving serious attention as smart materials for many applications. Herein, a mixture of tungsten oxide/zinc oxide nanocomposites was facilely prepared using a polymeric deep eutectic solvent comprising of polyethylene glycol and thiourea in the presence of different organic acids: glacial acetic acid (GA), itaconic acid (ITA) and lactic acid (LA). The morphological characteristics of the nanocomposites revealed spherical and ovoidal-shaped particles with slight agglomeration. Further, the photo-switching response of the nanocomposites revealed a blue colouration after exposure to UV light for at least 90 s, with visible-light-induced electronic absorptions at 777, 772 and 628 nm for the GA-, ITA- and LA-based nanocomposites, respectively. Based on electrochemical impedance spectroscopy studies, the ITA-based nanocomposites demonstrated a wide broadband which depicts good conductivity of the material. The observed fast photo-switching and conductivity properties show prospects for preparing materials for application in photochromic smart glasses/windows, optical display and semiconducting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Xia H, Xie K and Zou G 2017 Molecules 22 2236

    Article  Google Scholar 

  2. Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N et al 2010 Photochem. Photobiol. Sci. 9 213

    Article  CAS  Google Scholar 

  3. Li D, Zhang M, Wang G and Xing S 2014 New J. Chem. 38 2348

    Article  CAS  Google Scholar 

  4. Irie M, Fukaminato T, Matsuda K and Kobatake S 2014 Chem. Rev. 114 12174

    Article  CAS  Google Scholar 

  5. Kurita M, Makihara M and Nakano H 2014 Soft Mater. 12 42

    Article  CAS  Google Scholar 

  6. Kayani A B A, Kuriakose S, Monshipouri M, Khalid F A, Walia S, Sriram S et al 2021 Small 2100621 1

    Google Scholar 

  7. Barachevsky V A 2018 Crystallogr. Reports 63 271

    Article  CAS  Google Scholar 

  8. Yamazaki S, Ishida H, Shimizu D and Adachi K 2015 ACS Appl. Mater. Interfaces 7 26326

    Article  CAS  Google Scholar 

  9. Oderinde O, Kang M, Kalulu M, Yao F and Fu G 2019 Superlattices Microstruct. 125 103

    Article  CAS  Google Scholar 

  10. Ejeromedoghene O, Zuo X, Ogungbesan S O, Oderinde O, Yao F, Adewuyi S et al 2022 J. Mater. Sci. Mater. Electron. 33 7371

    Article  CAS  Google Scholar 

  11. Bourdin M, Gaudon M, Weill F, Duttine M, Gayot M, Messaddeq Y et al 2020 Nanomaterials 9 1

    Google Scholar 

  12. Wang S, Fan W, Liu Z, Yu A and Jiang X 2018 J. Mater. Chem. C 6 191

    Article  CAS  Google Scholar 

  13. Balaji S, Djaoued Y, Albert A S, Brüning R, Beaudoin N and Robichaud J 2011 J. Mater. Chem. 21 3940

    Article  CAS  Google Scholar 

  14. Miyazaki H, Inada M, Suzuki H and Ota T 2013 J. Ceram. Soc. Japan 121 106

    Article  CAS  Google Scholar 

  15. Whitehead A H, Pölzler M and Gollas B 2010 J. Electrochem. Soc. 157 D328

    Article  CAS  Google Scholar 

  16. Cojocaru P, Magagnin L, Gomez E and Vallés E 2011 Mater. Lett. 65 3597

    Article  CAS  Google Scholar 

  17. Wang J, Zhang S, Ma Z and Yan L 2021 Green. Chem. Eng. 2 359

    Google Scholar 

  18. Nahar Y and Thickett S C 2021 Polymers (Basel) 13 1

    Article  Google Scholar 

  19. García G, Aparicio S, Ullah R and Atilhan M 2015 Energy and Fuels 29 2616

    Article  Google Scholar 

  20. Azizi N and Edrisi M 2017 Res. Chem. Intermed. 43 379

    Article  CAS  Google Scholar 

  21. Chaudhary A, Khanna G, Chopra H and Gaba R 2022 Res. Chem. Intermed. 48 2267

    Article  CAS  Google Scholar 

  22. Liu Q, Hu C and Wang X 2019 Appl. Surf. Sci. 480 404

    Article  CAS  Google Scholar 

  23. Almarri A H 2021 Ionics (Kiel) 27 2621

    Article  CAS  Google Scholar 

  24. Oderinde O, Hussain I, Kang M, Wu Y, Mulenga K, Adebayo I et al 2019 J. Ind. Eng. Chem. 80 1

    Article  CAS  Google Scholar 

  25. Cozzolino A, Monaco G, Daniel C, Rizzo P and Guerra G 2021 Polymers (Basel) 13 3330

    Article  CAS  Google Scholar 

  26. Kayani Z N, Iqbal M, Riaz S and Zia R 2015 Mater. Sci. Pol. 33 515

    Article  CAS  Google Scholar 

  27. Han S D, Hu J X and Wang G M 2022 Coord. Chem. Rev. 452 214304

    Article  CAS  Google Scholar 

  28. Harada J, Nakajima R and Ogawa K 2008 J. Am. Chem. Soc. 130 7085

    Article  CAS  Google Scholar 

  29. Zhang H, Li H, Liu L, Zhang Y, Zhang X and Li Z 2018 Chemosphere 203 26

    Article  CAS  Google Scholar 

  30. Oberdisse J, Pyckhout-Hintzen W and Straube E 2009 Recent Adv. Polym. Nanocomposites 1 397

    Article  Google Scholar 

  31. Pattelli L, Egel A, Lemmer U and Wiersma D S 2018 Optica 5 1037

    Article  CAS  Google Scholar 

  32. Badour Y, Jubera V, Andron I, Frayret C and Gaudon M 2021 Opt. Mater. X 12 100110

    CAS  Google Scholar 

  33. Song Y, Zhao J, Zhao Y and Huang Z 2016 RSC Adv. 6 99898

    Article  CAS  Google Scholar 

  34. Farveez A H M and Begum N S 2013 Bull. Mater. Sci. 36 45

    Article  Google Scholar 

  35. Ejeromedoghene O, Oderinde O, Yao F, Akinremi C, Adewuyi S and Fu G 2021 Res. Chem. Intermed. 47 3807

    Article  CAS  Google Scholar 

  36. Senthil R A, Priya A, Theerthagiri J, Selvi A, Nithyadharseni P and Madhavan J 2018 Ionics (Kiel) 24 3673

    Article  CAS  Google Scholar 

  37. Zhang X, Xia M, Wang F and Le W 2020 Ionics (Kiel) 26 6359

    Article  CAS  Google Scholar 

  38. Ejeromedoghene O, Ma X, Oderinde O, Yao F, Adewuyi S and Fu G 2021 New J. Chem. 45 18008

    Article  CAS  Google Scholar 

  39. Tyrode E and Corkery R 2018 J. Phys. Chem. C 122 28775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Project for Graduate Students of Southeast University with Grant Number 3307042101E6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onome Ejeromedoghene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daramola, C.B., Ejeromedoghene, O. & Kpomah, B. Photo-switching and conductive properties of polymeric deep eutectic solvent-based tungsten oxide–zinc oxide nanocomposites. Bull Mater Sci 46, 176 (2023). https://doi.org/10.1007/s12034-023-03017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03017-y

Keywords

Navigation