Skip to main content
Log in

Analysis of the NaYF4:Yb3+, Er3+ nanocrystals: up-conversion luminescence, crystal structure and morphology influenced by the dopant concentration and annealing temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

NaYF4:Yb3+,Er3+ nanocrystals were prepared using the combustion method. The samples were then annealed at 600 and 700°C for 2 h, respectively, to evaluate the effects of annealing temperature and the variation of the dopant concentration (Yb3+-Er3+). X-ray diffraction (XRD) analysis revealed the hexagonal phase (β-NaYF4) for the as-prepared and the nanocrystals annealed at 600°C, as well as the cubic phase for the 700°C annealed nanocrystals. Scanning electron microscopy (SEM) images revealed a variety of morphologies, including spherical, cubic, hexagonal and porous particles, as dopant concentrations (10–30 mol% of Yb3+, 1–3 mol% of Er3+) and annealing temperatures were varied. Green and red up-conversion emission peaks centred at ~483, 542 and 665 nm attributed to 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of erbium, respectively, were observed under 980 nm laser excitation for all Yb3+-Er3+ co-doped NaYF4 nanocrystals. UV–Vis analysis revealed that the nanocrystals exhibit six characteristic peaks centred at ~487, 520, 654, 802,972 and 1526 nm ascribed to 4I15/2 → 4F7/2 (~487 nm), 4I15/2 → 4H11/2 (~520 nm), 4I15/2 → 2F9/2 (~654 nm), 4I15/2 → 4I9/2 (~802 nm), 4I15/2 → 4I11/2 (~972) and 4I15/2 → 4I13/2 (~1500 nm) transitions of Er3+, respectively. The absorption peak at ~972 nm ascribed to the 2F7/2 transition of Yb3+ overlaps with the 4I11/2 absorption transition of Er3+. Yb3+-Er3+ doped NaYF4 nanocrystals’ up-conversion luminescence is studied for possible application in optical devices and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. John R and Rajakumari R 2012 Nano-Micro Lett. 4 65

    Article  CAS  Google Scholar 

  2. Sharma N, Jandaik S, Singh T G and Kumar S 2016 Nanobiomater. Antimicrob. Ther. 6 483

    Article  CAS  Google Scholar 

  3. Mbule P, Mlotswa D, Mothudi B and Dhlamini M 2021 J. Luminesc. 235 118060

    Article  CAS  Google Scholar 

  4. Ntwaeaborwa O M, Mofokeng S J, Kumar V and Kroon R E 2017 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 182 42

    Article  CAS  Google Scholar 

  5. Ma D K, Huang S M, Yu Y Y, Xu Y F and Dong Y Q 2009 J. Phys. Chem. C 113 8136

    Article  CAS  Google Scholar 

  6. Lim S F and Austin R H 2015 In: Applications of nanoscience in photomedicine (Chandos Publishing) 377

  7. Schäfer H, Ptacek P, Kömpe K and Haase M 2007 Chem. Mater. 19 1396

    Article  Google Scholar 

  8. Wilhelm S, Hirsch T, Patterson W M, Scheucher E, Mayr T and Wolfbeis O S 2013 Theranostics 3 239

    Article  CAS  Google Scholar 

  9. Wang L and Li Y 2007 Chem. Mater. 19 727

    Article  CAS  Google Scholar 

  10. Talane T E 2017 Study of structural and optical properties of undoped and rare earth doped TiO2 nanostructures (PhD thesis)

  11. Sharma R K, Mudring A V and Ghosh P 2017 J. Luminesc. 189 44

    Article  CAS  Google Scholar 

  12. Chen J and Zhao J X 2012 Sensors 12 2414

    Article  CAS  Google Scholar 

  13. Solís D 2010 Up-converted luminescent properties of rare-earth doped ZrO2 nanocrystals (Phd thesis)

  14. Vidyakina A A, Kolesnikov I E, Bogachev N A, Skripkin M Y, Tumkin I I, Lähderanta E et al 2020 Materials 13 3397

    Article  CAS  Google Scholar 

  15. Pellegrino A L 2019 Synthesis of hybrid metalorganic/inorganic systems and doped halide thin films for photovoltaics (PhD thesis) Universita decli Studi Di Catania)

  16. Kavand A, Serra C A, Blanck C, Lenertz M, Anton N, Vandamme T et al 2021 ACS Appl. Nano Mater. 4(5) 5319

    Article  CAS  Google Scholar 

  17. Shan S N, Wang X Y and Jia N Q 2011 Nanoscale Res. Lett. 6 1

    Article  Google Scholar 

  18. Sharma R K and Ghosh P 2021 Front. Chem. 9 580

    Google Scholar 

  19. Hakmeh N, Chlique C, Merdrignac-Conanec O, Fan B, Cheviré F, Zhang X et al 2015 J. Solid State Chem. 226 255

    Article  CAS  Google Scholar 

  20. Roh J, Yu H and Jang J 2016 ACS Appl. Mater. Interfaces 8 19847

    Article  CAS  Google Scholar 

  21. Huang Q, Ye W, Jiao X, Yu L, Liu Y and Liu X 2018 J. Alloys Compd. 763 216

    Article  CAS  Google Scholar 

  22. He S, Xia H, Zhang J, Zhu Y and Chen B 2017 Sci. Rep. 7 1

    Article  Google Scholar 

  23. Kaiser M 2021 Upconversion quantum yield and luminescence of beta-NaYF4: Yb3+, Er3+ nanoparticles PhD Thesis (Technischen Universität Berlin)

  24. Blake A J, Cole J M, Evans J S, Main P, Parsons S and Watkin D J 2009 Crystal structure analysis: principles and practice (Vol. 13) OUP Oxford

  25. Bamidele E 2022 Re: What are all possible reasons for the peak shift in X-Ray Diffraction? Retrieved from: https://www.researchgate.net/post/What-are-all-possible-reasons-for-the-peak-shift-in-X-RayDiffraction/635b61866a718dd856070a8b/citation/download

  26. Rozkuszka K P 1977 High-pressure x-ray diffraction study of linear polyethylene PhD Thesis (University of Massachusetts Amherst)

  27. Stanev V, Vesselinov V V, Kusne A G, Antoszewski G, Takeuchi I and Alexandrov B S 2018NPJ Comput. Mater. 4 1

  28. Srinet G, Sharma S, Guerrero-Sanchez J, Garcia-Diaz R, Ponce-Perez R, Siqueiros J M et al 2020 J. Alloys Compd. 849 156587

    Article  CAS  Google Scholar 

  29. Karamat S, Rawat R S, Lee P, Tan T L and Ramanujan R V 2014 Prog. Nat. Sci.: Mater. Int. 24 142

    Article  CAS  Google Scholar 

  30. Cheng W and Ma X 2009 J. Phys.: Conf. Series (Vol. 152, No. 1, p. 012039) IOP Publishing

  31. Mbule P S 2013 The effects of the ZnO nanoparticles buffer layer on organic solar cells Phd thesis (University of the Free State)

  32. Lekesi L P, Motaung T E, Motloung S V, Koao L F and Malevu T D 2022 J. Mol. Struct. 1251 132014

    Article  CAS  Google Scholar 

  33. Ali D, Butt M Z, Muneer I, Farrukh M A, Aftab M, Saleem M et al 2019 Thin Solid Films 679 86

    Article  CAS  Google Scholar 

  34. Samsonov D, Zhdanov S, Morfill G and Steinberg V 2003 New J. Phys. 5 24

    Article  Google Scholar 

  35. Namagal S, Jaya N V, Muralidharan M and Sumithra S 2020 J. Mater. Sci.: Mater. Electron. 31 11398

    CAS  Google Scholar 

  36. Nagli L, Gaft M, Fleger Y and Rosenbluh M 2008 Opt. Mater. 30 1747

    Article  CAS  Google Scholar 

  37. Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X and Jin D 2018 Nat. Commun. 9 1

    Article  Google Scholar 

  38. Alkahtani M, Almuqhim A A, Qasem H, Alsofyani N, Alfahd A, Alenzi S M et al 2021 Nanomater. 11 2909

    Article  CAS  Google Scholar 

  39. Wang Q, Tan M C, Zhuo R, Kumar G A and Riman R E 2010 Nanosci. Nanotechnol. 10 1

    Google Scholar 

  40. Shaker A and Zekry A 2010 J. Electron Dev. 8 293

    Google Scholar 

  41. Mbule P S 2013 The effects of the ZnO nanoparticles buffer layer on organic solar cells Phd thesis (University of the Free State)

  42. Huang Y 2017 Upconverting nanoparticles for integration in bioimaging and therapeutic applications Phd thesis (Université du Québec, Institut national de la recherche scientifique)

  43. Giang L T K, Trejgis K, Marciniak L, Vu N and Minh L Q 2020 Sci. Rep. 10 1

    Article  Google Scholar 

  44. Zhao P, Wu Y, Zhu Y, Yang X, Jiang X, Xiao J et al 2014 Nanoscale 6 3804

    Article  CAS  Google Scholar 

  45. Wan F, Shi H, Chen W, Gu Z, Du L, Wang P et al 2017 Nanomaterials 7 210

    Article  CAS  Google Scholar 

  46. Li Z, Miao H, Fu Y, Liu Y, Zhang R and Tang B 2016 Nanoscale Res. Lett. 11 1

    Article  Google Scholar 

  47. Kawai K, Fukuda T, Nakano Y and Takeshita K 2016 EPJ Nuclear Sci. Technol. 2 44

    Article  Google Scholar 

  48. Ding M, Chen D, Yin S, Ji Z, Zhong J, Ni Y, Lu C and Xu Z 2015 Sci. Rep. 5 1

    Google Scholar 

Download references

Acknowledgements

We would like to thank the South African National Research Foundation (NRF) for financial support (grant no. 144932) and the University of South Africa for providing research infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pontsho Mbule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thokwane, P., Mbule, P. Analysis of the NaYF4:Yb3+, Er3+ nanocrystals: up-conversion luminescence, crystal structure and morphology influenced by the dopant concentration and annealing temperature. Bull Mater Sci 46, 140 (2023). https://doi.org/10.1007/s12034-023-02978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02978-4

Keywords

Navigation