Skip to main content
Log in

Impact of compression on the crystal structure, electronic and magnetic properties for bulk MoS2

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The impact of pressure on structural parameters, electronic structure and magnetic properties in MoS2 bulk material has been investigated using spin-polarized full-potential linearized augmented plane wave method in the Tran-Blaha-modified Becke-Johnson gradient approximation approach. Our findings at zero pressure in MoS2 bulk material are usually dealing with the obtainable experimental input. With increasing pressure, the lattice parameters of MoS2 bulk material are reduced, the material of interest has tendency to a metallic character and the total magnetic moment is increased non-monotonically in both spin-up and spin-down conduits. The impact of pressure on structural properties is more important vs. c-axis than a-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gmelin L 1995 GMELIN Institute for Inorganic Chemistry of the Max-Planck-Society for the Advancement of Science, 8th edn. (Berlin: Springer-Verlag) vol B7

    Google Scholar 

  2. Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302

    Article  Google Scholar 

  3. Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805

    Article  Google Scholar 

  4. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y et al 2010 Nano Lett. 10 1271

    Article  CAS  Google Scholar 

  5. Bouarissa A, Gueddim A, Bouarissa N and Maghraoui-Meherzi H 2019 Optik 208 164080

    Article  Google Scholar 

  6. Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede J C, Tedd J et al 1997 J. Sol. Energy Mater. Sol. Cells 46 115

    Article  CAS  Google Scholar 

  7. Ho W K, Yu J C, Lin J, Yu J G and Li P S 2004 Langmuir 20 5865

    Article  CAS  Google Scholar 

  8. Lee P A 1976 Optical and electrical properties (Dordrecht: Reidel) p 423

  9. Coehoorn R, Haas C and Degroot R A 1987 Phys. Rev. B 35 6203

    Article  CAS  Google Scholar 

  10. Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409

    Article  Google Scholar 

  11. Li T S and Galli G L 2007 J. Phys. Chem. C 111 16192

    Article  CAS  Google Scholar 

  12. Kandemir A, Yapicioglu H, Kinaci A, Çaǧin T and Sevik C 2016 Nanotechnology 27 055703

    Article  Google Scholar 

  13. Zhang Y, Xu W, Liu G and Zhu J 2020 J. Phys.: Conf. Ser. 1676 012164

    CAS  Google Scholar 

  14. Akbari A, Naseri M and Jalilian J 2018 Chem. Phys. Lett. 691 181

    Article  CAS  Google Scholar 

  15. Ou H, Xu S, Xiao Z, Fu H and Luo Y 2019 IOP Conf. Series: Mater. Sci. Eng. 493 012072

    Article  CAS  Google Scholar 

  16. Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor arxiv.org

  17. Holzapfel W B 1996 Rep. Prog. Phys. 59 29

    Article  CAS  Google Scholar 

  18. Saib S, Bouarissa N, Rodríguez-Hernández P and Muñoz A 2008 Physica B 403 4059

    Article  CAS  Google Scholar 

  19. Lukačević I and Kirin D 2010 Croat. Chem. Acta 83 15

    Google Scholar 

  20. Manjón F J and Errandonea D 2009 Phys. Stat. Sol. B 246 9

    Article  Google Scholar 

  21. Boucenna M and Bouarissa N 2004 Mater. Chem. Phys. 84 375

    Article  CAS  Google Scholar 

  22. Mujica J A, Rubio A, Muñoz A and Needs R J 2003 Rev. Mod. Phys. 75 863

    Article  CAS  Google Scholar 

  23. Eremets M 1996 High pressure experimental methods (Oxford: Oxford University Press)

    Google Scholar 

  24. Hemley R J, Mao H K and Struzhkin V V 2005 J. Synchrotran Radiat. 12 135

    Article  CAS  Google Scholar 

  25. Yin M T and Cohen M L 1980 Phys. Rev. Lett. 45 1004

    Article  CAS  Google Scholar 

  26. Payne M C, Teter M P, Alan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    Article  CAS  Google Scholar 

  27. Bouarissa N 2002 Phys. Stat. Sol. B 231 391

    Article  CAS  Google Scholar 

  28. Bouarissa N 2002 Mater. Chem. Phys. 73 51

    Article  CAS  Google Scholar 

  29. Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116

    Article  Google Scholar 

  30. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

    Article  Google Scholar 

  31. Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2014 WIEN2k an augmented plane wave plus local orbitals program for calculating crystal proprieties (Vienna University of Technology)

  32. Zhu Z Y, Cheng Y C and Schwingen Schlögl V 2011 Phys. Rev. B 84 153402

    Article  Google Scholar 

  33. Molina-Sánchez A, Sangalli D, Hummer K, Marini A and Wirtz L 2013 Phys. Rev. B 88 045412

    Article  Google Scholar 

  34. Abdul Rahman I and Purqon A 2017 J. Phys.: Conf. Series 877 012026

    Google Scholar 

  35. Wakabayashi N, Smith H G and Nicklow R M 1975 Phys. Rev. B 12 659

    Article  CAS  Google Scholar 

  36. Saib S and Bouarissa N 2007 Phys. Stat. Sol. B 244 1063

    Article  CAS  Google Scholar 

  37. Zerroug S, Ali Sahraoui F and Bouarissa N 2007 Eur. Phys. J. B 57 9

    Article  CAS  Google Scholar 

  38. Algarni H, Gueddim A, Bouarissa N, Khan M A and Ziani H 2019 Res. Phys. 15 102694

    Google Scholar 

  39. Cohen M L and Chelikowsky J R 1989 Electronic structure and optical properties of semiconductors (Berlin: Springer-Verlag)

    Book  Google Scholar 

  40. Bouarissa N 1998 Phys. Lett. A 245 285

    Article  CAS  Google Scholar 

  41. Martin R M 2004 Electronic structure: basic theory and practical methods (Cambridge University Press)

  42. Bouarissa N 2006 J. Phys. Chem. Solids 67 1440

    Article  CAS  Google Scholar 

  43. Adachi S 2005 Properties of group-IV, III-V, and II-VI semiconductors (Chichester: Wiley)

    Book  Google Scholar 

  44. Adachi S 2009 Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors (Chichester: John Wiley & Sons Ltd.)

    Book  Google Scholar 

  45. Bouarissa N 2001 Mater. Sci. Eng. B 86 53

    Article  Google Scholar 

  46. El Hassasna A, Bechiri A and Bouarissa N 2019 Mater. Res. Exp. 6 085915

    Article  Google Scholar 

  47. Saib S, Bouarissa N, Rodríguez-Hernández P and Muñoz A 2010 Eur. Phys. J. B 73 185

    Article  CAS  Google Scholar 

  48. Moulai N, Bouarissa N, Lagoun B and Kendil D 2019 J. Supercond. Nov. Magn. 32 1077

    Article  CAS  Google Scholar 

  49. Harrache Y and Bouarissa N 2019 Solid. Stat. Commun. 295 26

    Article  CAS  Google Scholar 

  50. Shinjo T 2009 (ed) Nanomagnetism and spintronics (USA: Elsevier Science) eBook ISBN: 9780080932163 https://doi.org/10.1016/C2009-0-18006-6

  51. Samy O, Zeng S, Birowosuto M D and Moutaouakil A E 2021 Crystals 11 355

    Article  CAS  Google Scholar 

  52. Teshome T and Dutta A 2018 J. Phys. Chem. C 122 15047

    Article  CAS  Google Scholar 

  53. Teshome T and Dutta A 2018 J. Phys. Chem. C 122 25127

    Article  CAS  Google Scholar 

  54. Teshome T and Dutta A 2019 ACS Omega 4 8701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouarissa, A., Maghraoui-Meherzi, H., Gueddim, A. et al. Impact of compression on the crystal structure, electronic and magnetic properties for bulk MoS2. Bull Mater Sci 46, 89 (2023). https://doi.org/10.1007/s12034-023-02933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02933-3

Keywords

Navigation