Skip to main content

Advertisement

Log in

ZnO–TiO2/rGO heterostructure for enhanced photodegradation of IC dye under natural solar light and role of rGO in surface hydroxylation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

To overcome the limitations of ZnO as a photocatalyst, the present work reports a ternary nanocomposite (ZnO–TiO2/rGO) with a high photocatalytic activity under direct natural solar light irradiation. Reduced graphene oxide (rGO) was obtained after bio-reduction of GO using pomegranate peels. Techniques of FE-SEM, TEM, XRD, FTIR, UV–Vis DRS, Raman and PL were used for characterization purpose. The ternary nanocomposite exhibited a high photocatalytic activity towards the degradation of indigo carmine dye, resulting in an efficiency of 92% within 150 min under sunlight illumination. Accordingly, the hybridization of ZnO with TiO2 and rGO improves light absorption, promotes high separation of photogenerated charges, and solves the photocorrosion drawback of ZnO, leading to a better stability and reusability of the nanocomposite. Particularly, the prepared rGO allowed certain hydrophilicity and a better surface hydroxylation. In view of that, a comprehensive photocatalytic mechanism was proposed and discussed, referred to experiments showing the effect of holes and OH scavengers. The findings revealed that the developed rGO hybridized with ZnO–TiO2 heterojunction can be a promising candidate for removing environmental contaminations using natural solar light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Thakre K G, Barai D P and Bhanvase B A 2021 Water Environ. Res. 93 2414

    Article  CAS  Google Scholar 

  2. Dutta V, Singh P, Shandilya P, Sharma S, Raizada P, Saini A K et al 2019 J. Environ. Chem. Eng. 7 103132

    Article  CAS  Google Scholar 

  3. Natarajan S, Bajaj H C and Tayade R J 2018 J. Environ. Sci. 65 201

    Article  CAS  Google Scholar 

  4. Mousa H M, Alenezi J F, Mohamed I M A, Yasin A S, Hashem A-FM and Abdal-Hay A 2021 J. Alloys Compd. 886 161169

    Article  CAS  Google Scholar 

  5. Chen X, Wu Z, Liu D and Gao Z 2017 Nanoscale Res. Lett. 12 143

    Article  Google Scholar 

  6. Zhang W, Zhang Y, Yang K, Yang Y, Jia J and Guo L 2019 Nanomaterials (Basel) 9 1671

    Article  CAS  Google Scholar 

  7. Tian F, Wu Z, Chen Q, Yan Y, Cravotto G and Wu Z 2015 Appl. Surf. Sci. 351 104

    Article  CAS  Google Scholar 

  8. Kumar K V A, Lakshminarayana B, Suryakala D and Subrahmanyam Ch 2020 RSC Adv. 10 20494

    Article  CAS  Google Scholar 

  9. Viet T Q Q, Khoi V H, Thi Huong Giang N, Thi Van Anh H, Dat N M, Phong M T et al 2021 Colloids Surf. A 629 127464

    Article  CAS  Google Scholar 

  10. Raizada P, Sudhaik A and Singh P 2019 Mater. Sci. Energy Technol. 2 509

    Google Scholar 

  11. Ani I J, Akpan U G, Olutoye M A and Hameed B H 2018 J. Cleaner Prod. 205 930

    Article  CAS  Google Scholar 

  12. Samadi M, Zirak M, Naseri A, Khorashadizade E and Moshfegh A Z 2016 Thin Solid Films 605 2

    Article  CAS  Google Scholar 

  13. Nguyen C H, Tran M L, Tran T T V and Juang R-S 2020 Purif. Technol. 232 115962

    Article  CAS  Google Scholar 

  14. Prasannalakshmi P and Shanmugam N 2017 Mater. Sci. Semicond. Process. 61 114

    Article  CAS  Google Scholar 

  15. Qi K, Xing X, Zada A, Li M, Wang Q, Liu S et al 2020 Ceram. Int. 46 1494

    Article  CAS  Google Scholar 

  16. Chauhan P S, Rai A, Gupta A and Bhattacharya S 2017 Mater. Res. Express 4 055004

    Article  Google Scholar 

  17. Wei Y, Shahid M Z, Lyu S, Sun W and Lyu S 2021 RSC Adv. 11 22618

    Article  CAS  Google Scholar 

  18. Siwińska-Stefańska K, Kubiak A, Piasecki A, Dobrowolska A, Czaczyk K, Motylenko M et al 2019 Appl. Surf. Sci. 463 791

    Article  Google Scholar 

  19. Das A, Kumar P M, Bhagavathiachari M and Nair R G 2020 Appl. Surf. Sci. 534 147321

    Article  CAS  Google Scholar 

  20. Gupta D, Chauhan R, Kumar N, Singh V, Srivastava V C, Mohanty P et al 2020 J. Environ. Manage. 258 110032

    Article  CAS  Google Scholar 

  21. Upadhyay R K, Soin N and Roy S S 2014 RSC Adv. 4 3823

    Article  CAS  Google Scholar 

  22. Li X, Yu J, Wageh S, Al-Ghamdi A A and Xie J 2016 Small 12 6640

    Article  CAS  Google Scholar 

  23. Jana A and Scheer E 2018 Langmuir 34 1497

    Article  CAS  Google Scholar 

  24. Lonkar S P, Pillai V and Abdala A 2019 Appl. Surf. Sci. 465 1107

    Article  CAS  Google Scholar 

  25. Al-Rawashdeh N A F, Allabadi O and Aljarrah M T 2020 ACS Omega 5 28046

    Article  CAS  Google Scholar 

  26. Xu T, Zhang L, Cheng H and Zhu Y 2011 Appl. Catal. B: Environ. 101 382

    Article  CAS  Google Scholar 

  27. Atchudan R, Edison T N J I, Perumal S, Karthikeyan D and Lee Y R 2016 J. Photochem. Photobiol. B 162 500

    Article  CAS  Google Scholar 

  28. Prabhu S, Megala S, Harish S, Navaneethan M, Maadeswaran P, Sohila S et al 2019 Appl. Surf. Sci. 487 1279

    Article  CAS  Google Scholar 

  29. Ramos P G, Luyo C, Sánchez L A, Gomez E D and Rodriguez J M 2020 Catalysts 10 660

    Article  CAS  Google Scholar 

  30. Kacem K, Ameur S, Casanova-Chafer J, Nsib M F and Llobet E 2022 J. Mater. Sci.: Mater. Electron. 33 16099

    CAS  Google Scholar 

  31. Pragathiswaran C, Smitha C, Mahin Abbubakkar B, Govindhan P and Anantha Krishnan N 2021 Mater. Today Proc. 45 3357

    Article  CAS  Google Scholar 

  32. Akyüz D 2021 Opt. Mater. 116 111090

    Article  Google Scholar 

  33. Siwińska-Stefańska K, Kubiak A, Piasecki A, Goscianska J, Nowaczyk G, Jurga S et al 2018 Mater. 11 841

    Article  Google Scholar 

  34. Chen Y, Zhang C, Huang W, Yang C, Huang T, Situ Y et al 2014 Surf. Coat. Technol. 258 531

    Article  CAS  Google Scholar 

  35. Johra F T and Jung W-G 2015 Appl. Catal. A 491 52

    Article  CAS  Google Scholar 

  36. Vasilaki E, Katsarakis N, Dokianakis S and Vamvakaki M 2021 Catal. 11 332

    Article  CAS  Google Scholar 

  37. Ranjan P, Agrawal S, Sinha A, Rao T R, Balakrishnan J and Thakur A D 2018 Sci. Rep. 8 12007

    Article  Google Scholar 

  38. Hidayah N M S, Liu W-W, Lai C-W, Noriman N Z, Khe C-S, Hashim U et al 2017 AIP Conf. Proc. 150002

  39. Khurshid F, Jeyavelan M, Hudson M S L and Nagarajan S 2019 R. Soc. Open Sci. 6 181764

    Article  CAS  Google Scholar 

  40. Abdolhosseinzadeh S, Asgharzadeh H, Sadighikia S and Khataee A 2016 Res. Chem. Intermed. 42 4479

    Article  CAS  Google Scholar 

  41. Paul R, Gayen R N, Biswas S, Bhat S V and Bhunia R 2016 RSC Adv. 6 61661

    Article  CAS  Google Scholar 

  42. Oppong SO-B, Opoku F and Govender P P 2019 Appl. Catal. B 243 106

    Article  CAS  Google Scholar 

  43. Güell F, Cabot A, Claramunt S, Moghaddam A O and Martínez-Alanis P R 2021 Nanomater. 11 870

    Article  Google Scholar 

  44. Reparaz J S, Güell F, Wagner M R, Callsen G, Kirste R, Claramunt S et al 2010 Appl. Phys. Lett. 97 133116

    Article  Google Scholar 

  45. Divya K S, Xavier M M, Vandana P V, Reethu V N and Mathew S 2017 New J. Chem. 41 6445

    Article  Google Scholar 

  46. Sengunthar P, Bhavsar K H, Balasubramanian C and Joshi U S 2020 Appl. Phys. A 126 567

    Article  CAS  Google Scholar 

  47. Oppong SO-B, Anku W W, Shukla S K, Agorku E S and Govender P P 2016 J. Sol-Gel. Sci. Technol. 80 38

    Article  CAS  Google Scholar 

  48. Oppong SO-B, Opoku F and Govender P P 2021 Catal. Lett. 151 1111

    Article  CAS  Google Scholar 

  49. Oppong S O B, Anku W W, Shukla S K and Govender P P 2017 Res. Chem. Intermed. 43 481

    Article  CAS  Google Scholar 

  50. Anku W W, Oppong SO-B, Shukla S K, Agorku E S and Govender P P 2016 Prog. Nat. Sci.: Mater. Int. 26 354

    Article  CAS  Google Scholar 

  51. Agorku E S, Mamo M A, Mamba B B, Pandey A C and Mishra A K 2015 Mater. Sci. Semicond. Process. 33 119

    Article  CAS  Google Scholar 

  52. Gang R, Xu L, Xia Y, Zhang L, Wang S and Li R 2021 ACS Omega 6 3831

    Article  CAS  Google Scholar 

  53. Schneider J T, Firak D S, Ribeiro R R and Peralta-Zamora P 2020 Phys. Chem. Chem. Phys. 22 15723

    Article  CAS  Google Scholar 

  54. Bao H V, Dat N M, Giang N T H, Thinh D B, Tai L T, Trinh D N et al 2021 Surf. Interfaces 23 100950

    Article  CAS  Google Scholar 

  55. Johra F T and Jung W-G 2015 Appl. Catal. A 491 52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Khaoula Kacem acknowledges the University of Sousse for research funding. We also acknowledge Enas Moustafa and Prof. Lluis Marsal for the reusability test. Juan Casanova-Chafer gratefully thanks ICREA ACADEMIA (project: 2018 ICREA ACADEMIA-01-Ajut). Frank Güell acknowledges the financial support of PID2020-116612RB-C32 and MAT2017-87500-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Faouzi Nsib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacem, K., Casanova-Chafer, J., Hamrouni, A. et al. ZnO–TiO2/rGO heterostructure for enhanced photodegradation of IC dye under natural solar light and role of rGO in surface hydroxylation. Bull Mater Sci 46, 83 (2023). https://doi.org/10.1007/s12034-023-02913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02913-7

Keywords

Navigation