Skip to main content
Log in

Theoretical study of the interaction of trimethylamine with aluminium nitride nanotube and gallium-doped aluminium nitride nanotube

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A high concentration of trimethylamine (TMA) in the body can be converted to trimethylamine N-oxide (TMAO), which is a well-known proatherogenic substance capable of accelerating atherosclerosis disease in humans. Hence, there is a pressing need for the development of fast, accurate and reliable nanomaterials for the detection of TMA. In this study, the interaction of TMA with aluminium nitride nanotube (AlNNT) and gallium-doped aluminium nitride nanotube (AlNGaNT) was investigated using density functional theory at the M06-2X, B3LYP, ωB97XD at 6-311G(d)/6-31G(d) levels of theory. The results of the interaction energy between AlNGaNT and TMA for the 6-31G(d) increased remarkable in the order of M06-2X: −1.57 < B3LYP-D3:1.58 < ωB97XD: 1.89 kcal mol−1, while the 6-311G(d) showed higher interaction energy in the order of B3LYP-D3: −1.96 < M06-2X: −1.99 < ωB97XD: −2.03 kcal mol−1. Generally, the interaction of TMA with AlNNT and AlNGaNT increases the global reactivity parameter. From topological, a strong interaction was observed from −0.010 to −0.050 a.u. for signλ2(r)ρ(r) function and 0.000 to 0.00 to 0.400 for aRDG in TMA/AlNGaNT, where at signλ2(r)ρ(r) more scattered plot was observed between −0.050 to −0.020 a.u. While the small scattered plot was observed for TMA/AlNGaNT at 0.00 to −0.010 a.u. for signλ2(r)ρ(r) and aRDG of 0.00 to 0.400. Therefore, it was proposed that an electrostatic interaction is the mechanism between TMA and the AlNNC, and the strength of the interaction increase with the addition of Ga-atom as in AlNGaNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Boschloo G 2019 Front. Chem. https://doi.org/10.3389/fchem.2019.00077

    Article  Google Scholar 

  2. Huang Y, Wang B, Yuan H, Sun Y, Yang D, Cui X et al 2021 Catal. Sci. Technol. 11 1652

    Article  CAS  Google Scholar 

  3. Xu J I E, Liang G, Wang L, Xu W, Cui W, Zhang H U I et al 2010 JSCS 75 259

    Article  CAS  Google Scholar 

  4. Usman M, Ibrahim M and Khalid M 2019 Chem. Phys. Lett. 719 59

    Article  Google Scholar 

  5. Hedley G J, Ruseckas A and Samuel I D W 2017 Chem. Rev. 117 796

    Article  CAS  Google Scholar 

  6. Prashantha A G, Keshavayya J, Shoukat A and Li R A 2021 Results Chem. 3 100110

    Article  CAS  Google Scholar 

  7. Rahmani Z, Edjlali L, Vessally E and Hosseinian A 2020 J. Sulfur Chem. 41 483

    Article  CAS  Google Scholar 

  8. Cao Y, Farahmand M, Fosshat S, Rezaei S and Pourmomen L 2022 Comput. Theor. Chem. 1207 113537

    Article  CAS  Google Scholar 

  9. Yasar S, Hosseinian A, Ebadi A, Ahmadi S, Ebrahimiasl S and Kumar A A 2021 Struct. Chem. 10 1007

    Google Scholar 

  10. Khaleghian M and Azarakhshi F 2019 Int. J. Nano Dimens. 10 105

    CAS  Google Scholar 

  11. Mohammadi M D and Hamzehloo M 2018 Comput. Theor. Chem. 1144 26

    Article  Google Scholar 

  12. Hassanpour A, Zamanfar M, Ebrahimiasl S, Ebadi A and Liu P 2021 Arab. J. Sci. Eng. 10 336

    Google Scholar 

  13. Wu Q, Hu Z, Wang X, Lu Y, Chen X and Xu H C Y 2003 J. Am. Chem. Soc. 125 10176

    Article  CAS  Google Scholar 

  14. Balasubramanian C, Bellucci S, Castrucci P, DeCrescenzi M and Bhoraskar S V 2004 Chem. Phys. Lett. 383 188

    Article  CAS  Google Scholar 

  15. Xiao M and Liu P 2020 J. Mol. Model 26 1

    Article  Google Scholar 

  16. Kaur A, Kaur M, Kumar A, Meena R, Pratap S G, Saravanan M et al 2020 Nano Mater. Sci. 7 194

    CAS  Google Scholar 

  17. Fá A J G, Faccio R and López-corral I 2021 Appl. Surf. Sci. 538 899

    Google Scholar 

  18. Vatanparast M and Shariatinia Z 2018 J. Fluor. Chem. 211 81

    Article  CAS  Google Scholar 

  19. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Gaussian˜16 {R}evision {C}.01

  20. Dennington R, Keith T A and Millam J M 2016 GaussView 6.0

  21. Friesner R A 2005 PNAS 102 6648

    Article  CAS  Google Scholar 

  22. Hohenstein E G, Chill S T and Sherrill C D 2008 J. Chem. Theory Comput. 4 1996

    Article  CAS  Google Scholar 

  23. Lu T, Chen F and Multiwfn 2012 J. Comput. Chem. 33 580

    Article  Google Scholar 

  24. Udoikono A D, Louis H, Eno E A, Agwamba E C, Unimuke T O, Igbalagh A T et al 2022 J. Photochem. Photobiol. 10 100116

    Article  Google Scholar 

  25. Unimuke T O, Louis H, Eno E A, Agwamba E C and Adeyinka A S 2022 ACS Omega 7 23

    Article  Google Scholar 

  26. Patrick-Inezi F S, Emori W, Louis H, Apebende C G, Agwamba E C, Unimuke T O et al 2022 Health Anal. 2 100030

    Google Scholar 

  27. Banerjee S, Mitra D and Bandyopadhyay A K 2018 2nd Inter. Conf. Bio. Sci. 102

  28. Wei K, Louis H, Emori W, Idante P S, Agwamba E C, Cheng C-R et al 2022 J. Mol. Struct. 132795 10

    Google Scholar 

  29. Louis H, Onyebuenyi I B, Odey J O, Igbalagh A T, Mbonu M T, Eno E A et al 2021 RSC Adv. 11 28433c

    Article  Google Scholar 

  30. Zhang Y, Shen C, Lu X, Mu X and Song P 2019 Spectrochim. Acta 117687 234

    Google Scholar 

  31. Plasser F, Thomitzni B, Stefanie A B, Wenzel J, Rehn D R, Wormit M et al 2015 J. Comput. Chem. 36 1609

    Article  CAS  Google Scholar 

  32. Khan M U, Khalid M, Ibrahim M, Albert A, Braga C, Safdar M et al 2018 J. Chem. 21 293

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Solid-State Theory Group at the Physics Department at the Universita‘ degli Studi di Milano-Italy for providing computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitler Louis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M.D., Louis, H., Afaridoon, H. et al. Theoretical study of the interaction of trimethylamine with aluminium nitride nanotube and gallium-doped aluminium nitride nanotube. Bull Mater Sci 46, 22 (2023). https://doi.org/10.1007/s12034-022-02870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02870-7

Keywords

Navigation