Skip to main content
Log in

Frustrated microstructures composite PbS material’s size perspective from XRD by variant models of Williamson–Hall plot method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The coherent crystalline domain size of a particle is well understood and investigable from the broadening of X-ray diffraction (XRD) peaks by Williamson–Hall (WH) method in connection with a strain, and it has a correlation with the strain, stress, energy density, defects/dislocations. The coherent domain size of binary semiconducting material particles is being interlinked with the applications like sensors, solar systems, photo-detectors, photocatalyst, etc. In this work, the frustrated microstructure of PbS elucidated the perspective of different models of the WH method. Frustrated microstructural PbS nanomaterial was prepared, confirmed and rendered its microstructural analysis from the XRD data and scanning electron microscope. Eight various approaches as the variant models of the Williamson–Hall plotting methods have been tested. It includes the models like Balzar approach, UDM, USDM, UDEDM, mWHP model, Ehkl/E0 ratio model, direct fitting of simplified WH model with introducing new approach and the modified Kibasomba-WH model, which uses linearization of Scherrer equation with the WH method. This study lightens the USDM and UDEDM sizes in an account of a Zener constant. The other non-WH methods like the Scherrer formula method, modified Scherrer method, stress–strain methods and Halder–Wagner method are also included for comparison and to see their status in a cluster of frustrated structures. The sizes in connection with strain, stress, energy density, dislocation and stacking fault have also been investigated for the frustrated PbS nanomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Rietveld H M 1969 J. Appl. Cryst. 2 65

    Article  CAS  Google Scholar 

  2. Rodriguez-Carvajal J 1990 FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr Toulouse, France 127

  3. Bergmann J, Friedel P and Kleeberg R 1998 Commission on Powder Diffraction (IUCr) Newsletter 20 5

  4. Cullity B D 1956 Element of X-ray diffraction (Addison-Wisley Publication, Massachusetts)

  5. Scherrer P 1918 Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische 1918 98

    Google Scholar 

  6. Choudhury N and Sarma B K 2008 Indian J. Pure Appl. Phys. 46 266

    Google Scholar 

  7. Bindu P and Thomas S 2014 J. Theor. Appl. Phys. 8 123

    Article  Google Scholar 

  8. Rogers D and Daniels P 2002 Biomaterials 23 2577

    Article  CAS  Google Scholar 

  9. Ungar T and Borbely A 1996 Appl. Phys. Lett. 69 3173

    Article  CAS  Google Scholar 

  10. Takaki S, Jiang F, Masumura T and Tsuchiyama T 2018 ISIJ Int. 58 769

    Article  CAS  Google Scholar 

  11. Kibasomba P, Dhlamini S, Maaza M, Liu C, Rashad M, Rayan D et al 2018 Results Phys. 9 628

    Article  Google Scholar 

  12. Adair J H, Li T, Kido T, Havey K, Moon J, Mecholsky J et al 1998 Mater. Sci. Eng. R. 23 139

    Article  Google Scholar 

  13. Navaneethan M, Nisha K D, Ponnusamy S and Muthamizhchelvan C 2009 Rev. Adv. Mater. Sci. 21 217

    CAS  Google Scholar 

  14. Hines M A and Scholes G D 2003 Adv. Mater. 15 1844

    Article  CAS  Google Scholar 

  15. Gademne P, Yagil Y and Deutscher G 1989 J. Appl. Phys. 66 3019

    Article  Google Scholar 

  16. Baku Eva L, Muskin S, Hines M A, Chang T, Tzolov M, Scholes, et al 2003 Appl. Phys. Lett. 82 2895

    Article  CAS  Google Scholar 

  17. Warner J H and Watt A R 2006 Mater. Lett. 60 2375

    Article  CAS  Google Scholar 

  18. Cheraghizade M, Yousefi R, Sheini F J and Saaedi A 2012 Majlesi. J. Telecommun. Devices 1 79

    Google Scholar 

  19. Mozafari M, Moztarzadeh F, Vashaee D and Tayebi L 2012 Physica E 44 1429

    Article  CAS  Google Scholar 

  20. Yousefi R, Cheraghizade M, Sheini F J, Basirun W J and Huang N M 2014 Curr. Appl. Phys. 14 1031

    Article  Google Scholar 

  21. Zhou S M, Zhang X H, Meng X M, Fan X, Lee S T and Wu S K 2005 J. Solid State Chem. 178 399

    Article  CAS  Google Scholar 

  22. Wang Z, Zhao B, Zhang F, Mao W, Qian G and Fan X 2007 Mater. Lett. 61 3733

    Article  CAS  Google Scholar 

  23. Sun S, Han Q F, Wu X D, Zhu J W and Wang X 2011 Mater. Lett. 65 3344

    Article  CAS  Google Scholar 

  24. Devi P I, Sivabharathy M and Ramachandran K 2013 Optik. 124 3872

    Article  Google Scholar 

  25. SalavatiNiasari M and Ghanbari D 2012 Particuology 10 628

    Article  CAS  Google Scholar 

  26. Mocanu A, Rusen E, Diacon A and Dinescu A 2014 Powder Tech. 253 237

    Article  CAS  Google Scholar 

  27. Balzar D, Audebrand L, Daymond M R, Fitch A, Hewat A, Langford I J et al 2004 J. Appl. Cryst. 37 911

    Article  CAS  Google Scholar 

  28. Guinebretiere R 2007 X-ray diffraction by polycrystalline materials. ISTE 2007 248

    Google Scholar 

  29. Langford J I, Louer D, Sonneveld E J and Visser J W 1986 Powder Diffraction 1 211

    Article  CAS  Google Scholar 

  30. Abe S and Masumoto K 2000 J. Cryst. Growth 217 125

    Article  CAS  Google Scholar 

  31. Williamson G K and Hall W H 1953 Acta Metall. 1 22

    Article  CAS  Google Scholar 

  32. Ungar T, Ott S, Sanders P G, Borbely A and Weertman J R 1998 Acta Mater. 46 3693

    Article  CAS  Google Scholar 

  33. Rajathi S, Kirubavathi K and Selvaraju K 2017 Arabian J. Chem. 10 1167

    Article  CAS  Google Scholar 

  34. Altermatt U D and Brown I D 1987 Acta Cryst. A43 125

    Article  CAS  Google Scholar 

  35. Patil R S, Lokhande C D, Mane R S, Gujar T P and Han S H 2006 J. Mater Sci. 41 5723

    Article  CAS  Google Scholar 

  36. Rajathi S, Kirubavathi K and Selvaraju K 201/7 Arabian J. Chem. 10 1167 h

  37. Shyju T S, Anandhi S, Sivakumar R and Gopalakrishnan R 2014 Int. J. Nanosci. 13 1450001

    Article  Google Scholar 

  38. Bin D, Wang D, Wang S, Zhang T K, Qu W G and Xu A W 2011 Nanoscale 3 1014

    Article  Google Scholar 

  39. Obaid A, Mahdi M and Hassan Z 2012 Optoelectron. Adv. Mater. – Rapid Commun. 6 422

  40. Sarkar S and Das R 2018 Indian J. Pure Appl. Phys. 56 765

    Google Scholar 

  41. Jacob R, Nair H G and Isac J 2015 Int. Lets. Chem. Phys. Astron. 44 107

    Google Scholar 

  42. Rueden C T, Schindelin J and Hiner M C 2017 BMC Informatics 18 529

    Google Scholar 

  43. Langford J I and Wilson A J C 1978 J. Appl. Cryst. 11 102

    Article  CAS  Google Scholar 

  44. Gaillac R, Pumbi P and Coudert F 2016 J. Phys. Condens. Matter 28 275201

    Article  Google Scholar 

  45. Kim S and Ledbetter H 2008 J. Appl. Phys. https://www.nist.gov (Accessed February 2022)

  46. Bhagavantam S 1955 Elastic properties of single crystalline aggregates, Symposium on the elasticity of crystal, Proceedings-section A 41 72

    Google Scholar 

  47. Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A et al 2015 Charting the complete elastic properties of inorganic crystalline compounds, Scientific Data 2 150009

    Article  Google Scholar 

  48. PbS DFT data resource, material project id mp-21276, doi:1017188/1196542

  49. Martinetto P, Anne M, Dooryhee E and Walter P 2000 J. Phys. IV 10 465

    Google Scholar 

  50. Kalika M P C, Deka K, Das J, Hazarika N, Dey P, Das R et al 2012 Mater. Lett. 87 84

    Article  Google Scholar 

  51. Takaki S, Masumura T and Tsuchiyama T 2018 ISIJ Int. 58 2354

    Article  CAS  Google Scholar 

  52. Dragomir I C and Ungar T 2002 Powder Diffraction 17 104

    Article  CAS  Google Scholar 

  53. Monshi A, Foroughi M R and Monshi M R 2012 World J. Nano Sci. Eng. 2 154

    Article  Google Scholar 

  54. Yaremiy I P, Bushkova S, Bushkova N I and Yaremiy S I 2019 J. Nano-Electro. Phys. 11 04020

    CAS  Google Scholar 

  55. Rabiel M, Palevicius A, Monshi A, Nasiri Sohrab, Vilkauskas A and Janusas G 2020 Nanomaterials 10 1627

  56. Kulkarni S 2006 Nanotechnology Principles and Practices (New Delhi: Capital Publishing Company)

Download references

Acknowledgements

First author is thankful to Dr P R Arjunwadkar, Dr C M Dudhe and Dr R R Patil, Institute of Science, Nagpur, on meaningful discussion on concerned topics and criticizing the presented methods. We are also thankful to CELREF and EIVISE software’s authors and developers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish P Tirpude.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayade, N.T., Tirpude, M.P. Frustrated microstructures composite PbS material’s size perspective from XRD by variant models of Williamson–Hall plot method. Bull Mater Sci 46, 20 (2023). https://doi.org/10.1007/s12034-022-02843-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02843-w

Keywords

Navigation