Skip to main content
Log in

Chemically modified graphene oxide with fatty alcohol as antiwear, antifriction and rheology modifier for lubricating oil

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide is a diverse material for surface modification due to many –OH and –COOH groups present at terminal positions. This study reported the synthesis of nanoadditive from graphene oxide (GO) and hexadecanol (HD). The nanoadditive synthesized form was characterized by routine spectroscopic techniques like Fourier transform-infrared, X-ray diffraction and scanning electron microscopy. The thermal stability of a nanoadditive was further examined using thermogravimetric analysis. After confirming GO-HD formation, it was dispersed in mineral base oil (N-250) in three different compositions (0.2, 0.4 and 0.6% w/v) by ultrasonication method. The nanoadditives doped mineral oil was evaluated using standard ASTM methods for physicochemical analysis like kinematic viscosity, viscosity index and pour point. It was observed that GO-HD shows a considerable improvement in viscosity index and pour point at lower concentrations. Further, the resulting lubricant-doped GO-HD was also analysed for rheological and tribological analysis using Anton Paar MCR-72 and ASTM D4172 methods. It was observed that nanoadditives-doped lubricant exhibits non-Newtonian behaviour with respect to the base oil, whereas tribological results indicate a significant reduction in wear scar diameter ~9.5% and coefficient of friction ~11.8% as compared to the mineral base oil. Therefore, GO-HD nanoadditive shows multifunctional behaviour in terms of viscosity index, pour point, rheology and enhancement in antiwear and antifriction properties. The stable dispersion of chemically functionalized GO-HD provides low resistance sheared between the contacting surfaces due to the weak van der Waals interaction between their lamellas, thus significantly reducing both the friction and the wear.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Ismail N A, Zulkifli N W M, Chowdhury Z Z and Johan M R 2021 Diam. Relat. Mater. 115 108357

    Article  CAS  Google Scholar 

  2. Meurant G 1978 Tribology: A systems approach to the science and technology of friction, lubrication, and wear 1st edn. Elsevier

    Google Scholar 

  3. Hill Mc G 2007 McGraw-Hill concise encyclopedia of physics (USA: McGraw-Hill Companies)

    Google Scholar 

  4. Mang T and Dresel W 2007 Lubricants and lubrication 2nd edn. (Weinheim: John Wiley & Sons)

    Google Scholar 

  5. Geim A K and Novoselov K S 2009 Nat. Mater. 11

  6. Geim A K 2009 Science 324 15300

    Article  Google Scholar 

  7. Kim K S, Lee H J, Lee C, Lee S K, Jang H, Ahn J H et al 2011 ACS Nano 5 5107

    Article  CAS  Google Scholar 

  8. Berman D, Deshmukh S A, Sankaranarayanan S K R S, Erdemir A and Sumant A V 2014 Adv. Funct. Mater. 24 6640

    Article  CAS  Google Scholar 

  9. Bunch J S, Verbridge S S, Alden J S, Zande A M V D, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458 https://doi.org/10.1021/nl801457b

    Article  CAS  Google Scholar 

  10. Paul G, Hirani H, Kuila T and Murmu N C 2019 Nanoscale 11 3458

    Article  CAS  Google Scholar 

  11. Rasheed A K, Khalid M, Rashmi W, Gupta T C S M and Chan A 2016 Renew. Sustain. Energy Rev. 63 346

    Article  CAS  Google Scholar 

  12. Chouhan A, Mungse H P and Khatri O P 2020 Adv. Colloid Interface Sci. 283 102215

    Article  CAS  Google Scholar 

  13. Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228

    Article  CAS  Google Scholar 

  14. Kim J, Cote L J, Kim F, Yuan W, Shull K R and Huang J 2010 J. Am. Chem. Soc. 132 8180

    Article  CAS  Google Scholar 

  15. Ismail N A, Mohd Z, Nurin W, Chowdhury Z Z and Johan M R 2020 J. Mol. Liq. 319 114276

    Article  CAS  Google Scholar 

  16. Quintana M, Vazquez E and Prato M 2013 Acc. Chem. Res. 46 138

    Article  CAS  Google Scholar 

  17. Chua C K and Pumera M 2014 Chem. Soc. Rev. 43 291

    Article  CAS  Google Scholar 

  18. Swain A K and Bahadur D 2014 J. Phys. Chem. C 118 9450

    Article  CAS  Google Scholar 

  19. Salavagione H J, Gomez M A and Martínez G 2009 Macromolecules 42 6331

    Article  CAS  Google Scholar 

  20. Cao Y, Lai Z, Feng J and Wu P 2011 J. Mater. Chem. 21 9271

    Article  CAS  Google Scholar 

  21. Kou L, He H and Gao C 2010 Nano-Micro Lett. 2 177

    Article  CAS  Google Scholar 

  22. Xue Y, Liu Y, Lu F, Qu J, Chen H and Dai L 2012 J. Phys. Chem. Lett. 3 1607

    Article  CAS  Google Scholar 

  23. Zhuang X D 2010 Adv. Mater. 22 1731

    Article  CAS  Google Scholar 

  24. An X, Simmons T, Shah R, Wolfe C, Lewis K M, Washimgton M et al 2010 Nano Lett. 10 4295

    Article  CAS  Google Scholar 

  25. Avinash M, Subrahmanyam K S, Sundarayya and Govindaraju T 2010 Nanoscale 2 1762

    Article  CAS  Google Scholar 

  26. Hu H, Wang X, Wang J, Liu F, Zhang M and Xu C 2011 Appl. Surf. Sci. 257 2637

    Article  CAS  Google Scholar 

  27. Ismail N and Bagheri S 2017 Lubricants 5 30

    Article  Google Scholar 

  28. Zhang W, Zhou M, Zhu H, Tian Y, Wang K, Wei J et al 2011 J. Phys. D Appl. Phys. 44 205303

    Article  Google Scholar 

  29. Ou J, Wang J, Liu S, Mu B, Ren J, Wang H et al 2010 Langmuir 26 15830

    Article  CAS  Google Scholar 

  30. Lin J, Wang L and Chen G 2011 Tribol. Lett. 41 209

    Article  CAS  Google Scholar 

  31. Agarwal P, Chaudhary S, Porwal J, Singh R K and Porwal S K 2021 Polym. Bull. 79 2133

    Article  Google Scholar 

  32. Singh N, Agarwal P, Porwal J and Porwal S K 2022 Biomass Conv. Bioref. https://doi.org/10.1007/s13399-022-02348-w

    Article  Google Scholar 

  33. Agarwal P and Porwal S K 2021 Biomass Conv. Bioref. https://doi.org/10.1007/s13399-021-01336-w

    Article  Google Scholar 

  34. Singh N, Agarwal P and Porwal S K 2022 Waste Biomass Valor. https://doi.org/10.1007/s12649-022-01745-6

    Article  Google Scholar 

  35. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  CAS  Google Scholar 

  36. Wang Y, Liu Z, Zhang T and Zhang Z 2017 Energy Technol. 5 2005

    Article  Google Scholar 

  37. ASTM (2004) Standard practice for calculating viscosity index from kinematic viscosity at 40° and 100° ASTM standard D 2270, Annual book of ASTM standard. ASTM International, West Conshohocken, PA

  38. Mousavi S B, Heris S Z and Stellé P E 2020 Sci Rep. 10 1

    Article  Google Scholar 

  39. Chouhan A, Mungse H P, Sharma O P, Singh R K and Khatri O P 2018 J. Colloid Interface Sci. 513 666

    Article  CAS  Google Scholar 

  40. Mungse H P and Khatri O P 2014 J. Phys. Chem. C 118 14394

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge CSIR-IIP, Dehradun, for extending the support in molecular characterization. We also thank Dr. Sandeep Porwal from CSJM University Kanpur and Dr. Nitin Kamboj from DIT University Dehradun for statistical analysis. Further, we thank DIT University for the award of research fellowship to Priyanka Agarwal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suheel K Porwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Porwal, J., Singhal, N. et al. Chemically modified graphene oxide with fatty alcohol as antiwear, antifriction and rheology modifier for lubricating oil. Bull Mater Sci 45, 243 (2022). https://doi.org/10.1007/s12034-022-02833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02833-y

Keywords

Navigation