Skip to main content

Advertisement

Log in

High pressure structural stability of UO2 by evolutionary algorithm

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the crystal structure stability of UO2 upon applying pressure using an evolutionary algorithm. UO2 exhibits face-centred cubic crystal structure with space group \(Fm\overline{3}m\) (S.G. No. 225) in the ambient pressure, and above 82 GPa transforms to an orthorhombic structure with space group Pnma (S.G. No. 62). The first-order structural phase transition is accompanied by a 5.4% volume collapse. The lattice parameters of both the cubic and orthorhombic phases decrease with the applied pressure. The bulk modulus (\({B}_{\mathrm{o}}\)) and the pressure derivative of bulk modulus (\({B}_{\mathrm{o}}^{{\prime}}\)) values of the cubic phase were found to be 210.41 ± 0.22 GPa and 3.60 ± 0.01, respectively. The \({B}_{\mathrm{o}}\) and \({B}_{\mathrm{o}}^{{{\prime}} }\) values of the orthorhombic phase were found to be 218.09 ± 3.29 GPa and 3.64 ± 0.03, respectively. The enthalpy of formation linearly increases with the applied pressure for both the cubic and orthorhombic phases, and at 82 GPa the enthalpy of the orthorhombic phase is found to be lower than the cubic phase indicating the structural phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Website of World Nuclear Association December 2021 https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx

  2. Sengupta A K, Khan K B, Panakkal J, Kamath H S and Banerjee S 2009 J. Nucl. Mater. 385 173

    Article  CAS  Google Scholar 

  3. MacDonald P E and Lee C B 2004 Nucl. Tech. 147 18

    Article  Google Scholar 

  4. Jae-Young Oh, Koo Yang-Hyun and Lee Byung-Ho 2009 Nucl. Eng. Tech. 41 1109

    Article  Google Scholar 

  5. Benedict U, Andreetti G D, Fournier J M and Waintal A 1982 J. Phys. Lett. 43 171

    Article  CAS  Google Scholar 

  6. Idiri M, Le Bihan T L, Heathman S and Rebizant J 2004 Phys. Rev. B 70 014113

    Article  Google Scholar 

  7. Geng H Y, Chen Y, Kaneta Y and Kinoshita M 2007 Phys. Rev. B 75 054111

    Article  Google Scholar 

  8. Gréaux S, Gautron L, Andrault D, Bolfan-Casanova N, Guignot N and Haines J 2008 Am. Mineralogist 93 1090

    Article  Google Scholar 

  9. Tian X, Wang Y, Ge L, Dong W, You Z, Ding P et al 2019 Comput. Mater. Sci. 169 109124

    Article  CAS  Google Scholar 

  10. Fossati C M P, Van Brutzel Laurent and Chartier Alain 2013 Phys. Rev. B 88 214112

    Article  Google Scholar 

  11. Wang B-T, Zhang P, Lizárraga R, Di Marco I and Eriksson O 2013 Phys. Rev. B 88 104107

    Article  Google Scholar 

  12. Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704

    Article  Google Scholar 

  13. Colin W G, Oganov A R and Hansen N 2006 Comp. Phys. Commun. 175 713

    Article  Google Scholar 

  14. Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comp. Phys. Commun. 184 1172

    Article  CAS  Google Scholar 

  15. Oganov A R, Lyakhov A O and Valle M 2011 Accts. Chem. Res. 44 227

    Article  CAS  Google Scholar 

  16. Buckingham R A 1938 Proc. R Soc. Lond. A 168 264

    Article  CAS  Google Scholar 

  17. Hung V V, Thanh L T M and Jindo K M 2010 Comput. Mater. Sci. 49 S355

    Article  Google Scholar 

  18. Levy M R 2005 PhD Thesis (University of London)

  19. Fowler P W, Knowles P J and Pyper N C 1985 Mol. Phys. 56 83

    Article  CAS  Google Scholar 

  20. Jha P K, Troper A, da Cunha Lima I C, Talati M and Sanyal S P 2005 Physica B 366 153

    Article  CAS  Google Scholar 

  21. Thompson A E, Meredig B, Stan M and Wolverton C 2014 J. Nucl. Mater. 446 155

    Article  CAS  Google Scholar 

  22. Potashnikov S I, Boyarchenkov A S, Nekrasov K A and Kupryazhkin A Y 2011 J. Nucl. Mater. 419 217

    Article  CAS  Google Scholar 

  23. Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244

    Article  CAS  Google Scholar 

  24. Birch Francis 1947 Phys. Rev. 71 809

    Article  CAS  Google Scholar 

  25. Shamba P, Debnath J C, Wang J L and Gu Q F 2019 Physica B: Cond. Mat. 554 5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I sincerely thank Dr S Raju, Dr N V Chandra Shekar, Dr Awadesh Mani and Dr N R Sanjay Kumar for their constant support and encouragement during this work. I am thankful to Dr N Subramanian for introducing the USPEX code. I also thank the computer division of IGCAR for providing the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Sornadurai.

Additional information

This article is part of the Special issue on ‘High pressure materials science: recent trends’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sornadurai, D. High pressure structural stability of UO2 by evolutionary algorithm. Bull Mater Sci 45, 228 (2022). https://doi.org/10.1007/s12034-022-02819-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02819-w

Keywords

Navigation