Skip to main content
Log in

Effect of fuel type on pseudocapacitance behaviour of CuO nanoparticles synthesized by solution combustion method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The copper oxide nanoparticles are obtained, via one-step, rapid, eco-friendly solution combustion synthesis using glycine and urea as fuel, to investigate the influence of fuel type on electrochemical behaviour. The structural characteristics are performed using X-ray diffraction method. The cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy and cycle stability tests are carried out in 6 M KOH electrolyte using a three-electrode system at room temperature. The electrochemical results show that the CuO synthesized using glycine (CuO–G) exhibits superior performance as an electrode in supercapacitor applications. The specific capacitance (16.72 F g−1) of the CuO–G electrode is higher than that (0.68 F g−1) of CuO synthesized using urea (CuO–U) electrode at a current density of 0.1 A g−1. Moreover, CuO–G electrode exhibits higher energy and power density of 0.41 Wh kg−1 and 143.5 W kg−1 compared to CuO–U electrode of 0.04 Wh kg−1 and 141.05 W kg−1, respectively. The results demonstrate that the CuO–G nanoparticles possess better electrochemical properties than CuO–U nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vijayakumar S, Lee S H and Ryu K S 2015 Electrochim. Acta 182 976

    Article  Google Scholar 

  2. Guan L, Yu L and Chen G Z 2016 Electrochim. Acta 206 464

    Article  CAS  Google Scholar 

  3. González A, Goikolea E, Barrena J A and Mysyk R 2016 Renew. Sust. Energ. Rev. 58 1189

    Article  Google Scholar 

  4. Suresh R, Tamilarasan K and Vadivu D S 2016 J. Ovonic. Res. 12 215

    CAS  Google Scholar 

  5. Zhou L, Li C, Liu X, Zhu Y, Wu Y and Van Ree T 2018 in Y Wu (ed.) Metal oxides in energy technologies (Netherlands: Elsevier) p 169

  6. Bhujun B, Tan M T T and Shanmugam A S 2017 Results Phys. 7 345

    Article  Google Scholar 

  7. Meng T, Xu Q Q, Wang Z H, Li Y T, Gao Z M, Xing X Y et al 2015 Electrochim. Acta 180 104

    Article  CAS  Google Scholar 

  8. Pendashteh A, Rahmanifar M S, Kaner R B and Mousavi M F 2014 Chem. Comm. 50 1972

    Article  CAS  Google Scholar 

  9. Sumanta Kumar Meher and Ranga Rao G 2011 J. Phys. Chem. C 115 25543

  10. Lv G, Wu D and Fu R 2009 J. Non-Cryst. Solids 355 2461

    Article  CAS  Google Scholar 

  11. Parnianfar H, Masoudpanah S M, Alamolhoda S and Fathi H 2017 J. Magn. Magn. Mater. 432 24

    Article  CAS  Google Scholar 

  12. Prabhakaran Thandapani and Hemalatha Jawaharlal 2016 Ceram. Int. 42 14113

    Article  Google Scholar 

  13. Dubal D P, Gund G S, Lokhande C D and Holze R 2013 Mater. Res. Bull. 48 923

    Article  CAS  Google Scholar 

  14. Moosavifard S E, El-Kady M F, Rahmanifar M S, Kaner R B and Mousavi M F 2015 ACS Appl. Mater. Interfaces 7 4851

    Article  CAS  Google Scholar 

  15. Shinde S K, Dubal D P, Ghodake G S and Fulari V J 2015 RSC Adv. 5 4443

    Article  CAS  Google Scholar 

  16. Mahalingam Umadevi and Jegatha Christy 2013 Spectrochim. Acta A 109 133

    Article  Google Scholar 

  17. Christy A J, Nehru L C and Umadevi M 2013 Powder Technol. 235 783

    Article  CAS  Google Scholar 

  18. Anandakumar B S, Reddy M B M, Tharamani C N, Pasha M A and Chandrappa G T 2013 Chin. J. Catal. 34 704

    Article  CAS  Google Scholar 

  19. Wang L, Li X, Hao L, Hong S, Robertson A W and Sun Z 2022 Chin. J. Catal. 43 1049

    Article  CAS  Google Scholar 

  20. Gulati U, Rajesh U C and Rawat D S 2016 ACS Sustain. Chem. Eng. 6 10039

    Article  Google Scholar 

  21. Ketwong T, Halabaso E R, Nguyen T K A, Areeprasert C and Doong R 2022 J. Electroanal. Chem. 905 115970

    Article  CAS  Google Scholar 

  22. Zhan Y, Bai J, Guo F, Zhou H, Shu R, Yu Y et al 2021 J. Alloys Compd. 885 161014

    Article  CAS  Google Scholar 

  23. Hussain I, Hussain T, Yang S, Chen Y, Zhou J, Ma X et al 2021 Chem. Eng. J. 413 12757

    Article  Google Scholar 

  24. Wei Wen and Jin-Ming Wu 2014 RSC Adv. 4 58090

    Article  Google Scholar 

  25. Alves A K, Bergmann C P and Berutti F A 2013 (eds) Novel synthesis and characterization of nanostructured materials (Heidelberg: Springer)

  26. Dean J A 1998 in N A Lange (ed.) Lange's handbook of chemistry (New York: McGraw-Hill)

  27. Rao G R, Mishra B G and Sahu H R 2004 Mater. Lett. 58 3523

    Article  CAS  Google Scholar 

  28. Radpour M, Masoudpanah S M and Alamolhoda S 2017 Ceram. Int. 43 14756

    Article  CAS  Google Scholar 

  29. Deng J, Kang L, Bai G, Li Y, Li P, Liu X et al 2014 Electrochim. Acta 132 127

    Article  CAS  Google Scholar 

  30. Wang Y, Lei Y, Li J, Gu L, Yuan H and Xiao D 2014 ACS Appl. Mater. Interfaces 6 6739

    Article  CAS  Google Scholar 

  31. Wang Q, Zhang Y, Xiao J, Jiang H, Hu T and Meng C 2019 J. Alloys Compd. 782 1103

    Article  CAS  Google Scholar 

  32. Murphin Kumar P S, Kyaw H H, Myint M T Z, Al-Haj L, Al-Muhtaseb AaH, Al-Abri M et al 2020 Int. J. Energy Res. 44 10682

    Article  CAS  Google Scholar 

  33. Lee J W, Ahn T, Kim J H, Ko J M and Kim J D 2011 Electrochim. Acta 56 4849

    Article  CAS  Google Scholar 

  34. Randviir Edward P and Banks Craig E 2013 Anal. Methods 5 1098

    Article  CAS  Google Scholar 

  35. Fu M, Chen W, Ding J, Zhu X and Liu Q 2019 J. Alloys Compd. 782 952

    Article  CAS  Google Scholar 

  36. Shanmugavani Amirthalingam and Kalai Selvan Ramakrishnan 2016 Electrochim. Acta 188 852

Download references

Acknowledgements

This study was supported by the Scientific Research Fund of Karadeniz Technical University (Project Number: FYL-2019-8050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sümran Bilgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, S., Alver, Ü., Erdemir, F. et al. Effect of fuel type on pseudocapacitance behaviour of CuO nanoparticles synthesized by solution combustion method. Bull Mater Sci 45, 240 (2022). https://doi.org/10.1007/s12034-022-02811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02811-4

Keywords

Navigation