Skip to main content
Log in

Molten salt synthesis, structural and photoluminescence properties of \(\mathbf{S}\mathbf{r}\mathbf{B}{\mathbf{i}}_{0.95}\mathbf{S}{\mathbf{m}}_{0.05}\mathbf{T}{\mathbf{a}}_{2-{\varvec{x}}}{\mathbf{V}}_{{\varvec{x}}}{\mathbf{O}}_{9}\) (\(0\le {\varvec{x}}\le 0.2\))

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

\({\mathrm{SrBi}}_{0.95}{\mathrm{Sm}}_{0.05}{\mathrm{Ta}}_{2-x}{\mathrm{V}}_{x}{\mathrm{O}}_{9}\) (x = 0, 0.05, 0.1, 0.2) compounds, which have been studied through X-ray diffraction Rietveld refinement, Fourier transform infrared (FTIR), absorption and emission techniques, were prepared through the molten salt method. All samples were refined in the orthorhombic system without any secondary phase detected. The Ta–O bond strength in the compounds is revealed by FTIR and Rietveld measurements. Along with scanning electron microscopic analysis, ceramics also consist of plate-like grains that decreased with the V content increasing. The difference in absorption spectra is attributed to localized tail stats within the bandgap. According to the impedance and AC conductivity results, after introducing vanadium into the structure, the V-doped \({\mathrm{SrBi}}_{0.95}{\mathrm{Sm}}_{0.05}{\mathrm{Ta}}_{2}{\mathrm{O}}_{9}\) ceramics exhibit higher conductivity. The reason that x = 0.1 ceramic has the smallest semicircle radius referring to a higher efficient charge carrier transfer is that this ceramic sample is mainly composed of large particles. Samarium emits orange-red colour at wavelength 599 nm, which is attributed to \({}^{4}\mathrm{G}_{\frac{5}{2}}\to { }^{6}\mathrm{H}_{\frac{7}{2}}\) transition. Regarding photoluminescence intensity, the more vanadium ions are introduced into the lattice, the fewer emission peaks are obtained. The latter has been interpreted in terms of the inhibition of the transfer of energy from one ion to another. In essence, The red photoluminescence emission intensity of Sm \({}^{3+}\) ions were successfully enhanced in \({\mathrm{SrBi}}_{0.95}{\mathrm{Sm}}_{0.05}{\mathrm{Ta}}_{2-x}{\mathrm{V}}_{x}{\mathrm{O}}_{9}\) (x = 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Aguilar G G and Costa M E V 2003 Ferroelectrics 294 211

    CAS  Google Scholar 

  2. Zhong Y, Deng B, Gao X, Sun P, Ren Y, Liang T et al 2019 J. Lumin. 215 648

    Google Scholar 

  3. Zhong Y, Sun P, Gao X, Liu Q, Huang S, Liu B et al 2019 J. Lumin. 212 51

    Article  Google Scholar 

  4. Senthil V and Panigrahi S 2019 Int. J. Hydrog. Energy 44 071

    Google Scholar 

  5. Senthil V, Badapanda T and Panigrahi S 2019 AIP Conf. Proc. 2115 030558

    Article  Google Scholar 

  6. Hartmann A, Lamb R, Scott J and Gutleben C 1997 Integr. Ferroelectr. 18 108

    Article  Google Scholar 

  7. Watanabe K, Hartmann A J, Lamb R N, Craig R P, Thurgate S M and Scott J F 2000 Jpn. J. Appl. Phys. 39 L309

    Article  CAS  Google Scholar 

  8. Bahng J H, Lee M, Park H, Kim I W, Jeong J H and Kim K J 2001 Appl. Phys. Lett. 79 1666

    Article  Google Scholar 

  9. Rathaur S K, Khosla R and Sharma S K 2021 Appl. Phys. Lett. 119 505

    Article  Google Scholar 

  10. Senthil V, Badapanda T, Chandrabose A and Panigrahi S 2015 Mater. Lett. 159 141

    Article  Google Scholar 

  11. Yang Q, Cao J X, Ma Y and Zhou Y C 2013 AIP Adv. 3 7

    Google Scholar 

  12. Shimakawa Y, Kubo Y, Tauchi Y, Kamiyama T, Asano H and Izumi F 2000 Appl. Phys. Lett. 77 2751

    Google Scholar 

  13. Wu C C and Yang C F 2020 Sci. Rep. 10 14

    Article  Google Scholar 

  14. Wu Y, Forbess M J, Seraji S, Limmer S J, Chou T P and Cao G 2001 J. Appl. Phys. 89 5652

    Google Scholar 

  15. Afqir M, Tachafine A, Fasquelle D, Elaatmani M, Carru J C, Zegzouti A et al 2017 Solid State Sci. 73 56

    Article  Google Scholar 

  16. Shannon R D 1967 Acta Cryst. A 32 767

    Google Scholar 

  17. Wilkinson R D, Schopflocher P and Rozenfeld M 1977 Arch. Dermatol. 113 476

    Article  Google Scholar 

  18. Mata J, Durán A, Martínez E, Escamilla R, Heiras J and Siqueiros J M 2006 J. Phys. Condens. Matter 18 520

    Google Scholar 

  19. Dhahri A, Dhahri E and Hlil E 2018 RSC Adv. 8 9111

    Google Scholar 

  20. Greenhoe B M, Hassan M K, Wiggins J S and Mauritz K A 2016 J. Polym. Sci. B Polym. Phys. 54 1923

    Article  Google Scholar 

  21. Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T et al 2018 Energy Environ. Sci. 11 434

    Article  Google Scholar 

  22. Paswan S K, Kumari S, Kar M, Singh A, Pathak H, Borah J et al 2021 J. Phys. Chem. Solids 151 109928

    Article  CAS  Google Scholar 

  23. Sharma N, Sharma S, Prabakar K, Amirthapandian S, Ilango S, Dash S et al 2015 arXiv Condens Matter 1507 04867

    Google Scholar 

  24. Wu S, Xiong P, Liu X, Fu Y, Liu Q, Chao Y et al 2021 J. Mater. Chem. C 9 3681

    Google Scholar 

  25. Zou H, Yu Y, Li J, Cao Q, Wang X and Hou J 2015 Mater. Res. Bull. 69 115

    Article  Google Scholar 

  26. Jamalaiah B C and Rasool S N 2015 J. Mol. Struct. 1097 165

    Article  Google Scholar 

  27. Mahamuda S, Swapna K, Venkateswarlu M, Rao A S, Shakya S and Prakash G V 2014 J. Lumin. 154 424

    Article  Google Scholar 

  28. Zou Z, Wu T, Lu H, Tu Y, Zhao S, Xie S et al 2018 RSC Adv. 8 7686

    Google Scholar 

  29. Umamaheswari D, Jamalaiah B, Sasikala T, Kim I G and Moorthy L R 2012 J. Non-Cryst. Solids 358 787

    Article  Google Scholar 

  30. Zhu Z, Tao C, Wang Z, Yang Z and Li P 2021 RSC Adv. 11 32716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Afqir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afqir, M., Stojadinovic, S., Meng, Y. et al. Molten salt synthesis, structural and photoluminescence properties of \(\mathbf{S}\mathbf{r}\mathbf{B}{\mathbf{i}}_{0.95}\mathbf{S}{\mathbf{m}}_{0.05}\mathbf{T}{\mathbf{a}}_{2-{\varvec{x}}}{\mathbf{V}}_{{\varvec{x}}}{\mathbf{O}}_{9}\) (\(0\le {\varvec{x}}\le 0.2\)). Bull Mater Sci 45, 225 (2022). https://doi.org/10.1007/s12034-022-02806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02806-1

Keywords

Navigation