Skip to main content
Log in

Structural, morphological, optical and electrical properties of Ni-doped SnO2 thin films by pneumatic spray pyrolysis method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we used a pneumatic spray pyrolysis technique at 450°C to deposit Sn1–xNixO2 thin films (0.0 ≤ x ≤ 0.10) on glass substrates. The influence of doping content on the films structural, morphological, optical and electrical properties was investigated. Structural characterization by X-ray diffraction indicated that the rutile phase of SnO2 is present in all thin films, and crystallite sizes are estimated to be in the range of 27–47 nm. Furthermore, structural and microstructural analyses revealed that at x = 0.05, there is a solubility limit for (Ni/Sn) in the SnO2 matrix. The optical bandgap energy increases from 3.83 to 4.01 eV as the dopant content increases according to the Burstein-Moss effect. Resistivity is affected by doping and the thickness of thin films. The figure-of-merit calculated for all samples showed significant differences in the Ni–SnO2 thin films. There was a difference between the doped thin films depending on the thickness. The lowest resistivity of 1.32 \(\times \) 10−2 Ω cm and the maximum conductivity of 75 Ω−1 cm−1 was found at a Ni content of 2%. Seebeck coefficient of all the thin films developed had n-type conductivity, and the values of 76, 71, 133 and 69 µ V/K for Ni-doped SnO2 thin films at 0, 2, 5 and 10 at.%, respectively, were found to improve the thermoelectric properties of SnO2 by Ni doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Roguai S and Djelloul A 2022 ALJEST 8 2285

    CAS  Google Scholar 

  2. Yates Heather M, Evans P, Sheel David W, Nicolay S, Ding L and Ballif Ch 2012 Surf. Coat. Technol. 213 167

    Article  Google Scholar 

  3. Zebbar N, Aida M S, Hafdallah A E K, Daranfad O, Lekiket H and Kechouane M 2009 Mater. Sci. Forum. 609 133

  4. Indrajit M, Kiruthika S, Ganesha Mukhesh K, Baral M, Kumar A, Vimala S et al 2021 J. Mater. Chem. A 9 23157

    Article  Google Scholar 

  5. Bilgin V, Akyuz I, Ketenci E, Kose S and Atay F 2010 Appl. Surf. Sci. 256 6586

    Article  CAS  Google Scholar 

  6. Miao D, Zhao Q, Wu S, Wang Z, Zhang X and Zhao X 2010 J. Non-Cryst. Solids 356 2557

    Article  CAS  Google Scholar 

  7. Zhao Li D, Chang C, Tan G and Kanatzidis M G 2016 Energy Environ. Sci. 9 3044

    Article  Google Scholar 

  8. Luo Y, Zheng Y, Luo Z, Hao S, Du C, Liang Q et al 2017 Adv. Energy Mater. 1702167 1

    Google Scholar 

  9. Tan G, Shi F, Hao S, Chi H, Bailey T P, Zhao L D et al 2015 J. Am. Chem. Soc. 137 1150

    Google Scholar 

  10. Banyamin Z Y, Kelly P J, West G and Boardman J 2014 Coatings 4 732

    Article  Google Scholar 

  11. Soitah T N, Yang C and Sun L 2010 Mat. Sci. Semicon. Proc. 13 125

    Article  CAS  Google Scholar 

  12. Li Y, Yin W, Deng R, Chen R, Chen J, Yan Q et al 2012 NPG Asia Mater. 4 e30

    Article  Google Scholar 

  13. Roguai S and Djelloul A 2022 Inorg. Chem. Commun. 138 109308

    Article  CAS  Google Scholar 

  14. Roguai S and Djelloul A 2022 Solid State Commun. 350 114740

    Article  CAS  Google Scholar 

  15. Li Y, Zhou W, Wang J, Yang Y and Wu P 2017 Mater. Chem. Phys. 199 216

    Article  CAS  Google Scholar 

  16. Amer M I, Moustafa S H and El-Hagary M 2020 Mater. Chem. Phys. 248 122892

    Article  CAS  Google Scholar 

  17. Girtan M, Cachet H and Rusu G I 2003 Thin Solid Films 427 406

    Article  CAS  Google Scholar 

  18. Espindola-Rodriguez M, Placidi M, Vigil-Galán O, Izquierdo-Roca V, Fontané X, Fairbrother A et al 2013 Thin Solid Films 535 67

    Article  CAS  Google Scholar 

  19. Garcı´a-Hipo´litoa M, Martı´neza R, Alvarez-Fregosoa O, Martı´neza E and Falcony C 2001 J. Lumin. 93 9

  20. Daranfed W, Aida M S, Attaf N, Bougdira J and Rinnert H 2012 J. Alloys Compd. 542 22

    Article  CAS  Google Scholar 

  21. Houaidji N, Ajili M, Chouial B and Turki Kamoun 2020 Optik 208 164026

  22. Henry J, Mohanraj K, Sivakumar G and Umamaheswari S 2015 Acta Part A Mol. Biomol. Spectr. 143 172

    Article  CAS  Google Scholar 

  23. Ahmed A, Ali T, Naseem Siddique M, Ahmad A and Tripathi P 2017 J. Appl. Phys. 122 083906

    Article  Google Scholar 

  24. Benhaoua A, Rahal A, Benhaoua B and Jalaci M 2014 Superlattice Microst. 70 61

    Article  CAS  Google Scholar 

  25. Abdelkrim A, Rahmane S, Abdelouahab O, Abdelmalek N and Brahim G 2016 Optik 127 2653

    Article  CAS  Google Scholar 

  26. Bagheri-Mohagheghi M M, Shahtahmasebi N, Alinejada M R, Youssefi A and Shokooh- Saremi M 2009 Solid State Sci. 11 233

    Article  CAS  Google Scholar 

  27. Williamson G K and Smallman R E 1956 Philos. Mag. 1 34

    Article  CAS  Google Scholar 

  28. Mariappan R, Ponnuswamy V, Ragavendar M, Krishnamoorthi D and Sankar C 2012 Optik-Int. J. Light Electron. Opt. 123 1098

    Article  CAS  Google Scholar 

  29. Roguai S and Djelloul A 2021 Solid State Commun. 334 114362

    Article  Google Scholar 

  30. Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H and Sae-Hoon Kim 2004 Langmuir 20 6476

  31. Liu Y, Yang F and Yang X 2008 Colloids Surf. A 312 219

    Article  CAS  Google Scholar 

  32. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C et al 2011 Colloid. Interface Sci. 356 706

    Article  CAS  Google Scholar 

  33. Ajili M, Castagné M and Kamoun Turki N 2015 Optik 126 708

    Article  CAS  Google Scholar 

  34. Ajili M, Castagné M and Kamoun Turki N 2014 J. Lumin. 150 1

    Article  CAS  Google Scholar 

  35. Roguai S and Djelloul A 2019 Appl. Phys. A 125 816

    Article  Google Scholar 

  36. Roguai S and Djelloul A 2020 Appl. Phys. A 126 122

    Article  CAS  Google Scholar 

  37. Segnit E R and Holland A E 1965 Ceram. Soc. 48 412

    Article  Google Scholar 

  38. Xin M 2019 Surf. Eng. 35 947

    Article  CAS  Google Scholar 

  39. Burstein E 1954 Phys. Rev. 93 632

    Article  CAS  Google Scholar 

  40. Roguai S, Djelloul A, Nouveau C, Souier T, Dakhel A A and Bououdina M 2014 J. Alloys Compd. 599 150

    Article  CAS  Google Scholar 

  41. Roguai S and Djelloul A 2021 React. Kinet. Mech. Catal. 132 1225

    Article  CAS  Google Scholar 

  42. Chatelon J P, Terrier C and Roger J A 1999 Semicond. Sci. Technol. 14 642

    Article  CAS  Google Scholar 

  43. Edson R, Leite M and Inset B 2004 Thin Solid Films 449 67

    Article  Google Scholar 

  44. Haacke G 1976 J. Appl. Phys. 47 4086

    Article  CAS  Google Scholar 

  45. Kaleemulla S, Reddy A S, Uthanna S and Reddy P S 2009 J. Alloys Compd. 479 589

    Article  CAS  Google Scholar 

  46. Khelifi C and Attaf A 2020 Surf. Interfaces 18 100449

    Article  CAS  Google Scholar 

  47. Kalvani P R, Jahangiri A, Shapouri S, Sari A and Jalili Y S 2019 Superlattice Microst. 132 106173

    Article  CAS  Google Scholar 

  48. Chaabouni F, Khalfallah B and Abaab M 2016 Thin Solid Films 617 95

    Article  CAS  Google Scholar 

  49. Das D and Karmakar L 2020 J. Alloys Compd. 824 153902

    Article  CAS  Google Scholar 

  50. Jayaraman V K, Alvarez A M, Bizarro M, Koudriavtsev Y and Amador M L O 2017 Thin Solid Films 642 14

    Article  CAS  Google Scholar 

  51. Singh S, Sharma V, Saini D and Sachdev K 2017 AIP Conf. Proc. 1832 080008

    Article  Google Scholar 

  52. Gogova D, Suwardi A, Kuznetsova Y A, Zatsepin A F, Mochalov L A, Nezhdanov A et al 2017 Int. J. Adv. Appl. Phys. Res. 4 1

    Article  Google Scholar 

  53. Elangovan E and Ramamurthi K 2003 J. Optoelectron. Adv. Mater. 5 45

    CAS  Google Scholar 

  54. Agashe C and Major S S 1996 J. Mater. Sci. 31 2965

    Article  CAS  Google Scholar 

  55. Tsubota T, Kobayashi S, Murakmi N and Ohno T 2014 J. Electron. Mater. 43 3567

    Article  CAS  Google Scholar 

  56. Yanagiya S, Nong NV, Xu J and Pryds N 2010 Materials 3(1) 318

  57. Zevalkink A, Smiadak D M, Blackburn J L, Ferguson A J, Chabinyc M L, Delaire O et al 2018 Appl. Phys. Rev. 5 021303

    Article  Google Scholar 

  58. MacDonald D K C 1962 Thermoelectricity: an introduction to the principles (New York, London: Wiley)

    Google Scholar 

  59. Boy J, Handwerg M, Ahrling R, Mitdank R, Wagner G, Galazka Z et al 2019 APL Mater. 7 022526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Roguai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roguai, S., Djelloul, A. Structural, morphological, optical and electrical properties of Ni-doped SnO2 thin films by pneumatic spray pyrolysis method. Bull Mater Sci 45, 227 (2022). https://doi.org/10.1007/s12034-022-02804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02804-3

Keywords

Navigation