Skip to main content
Log in

Third-order optical nonlinearity and power limiting characteristics of acid green 3 dye

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Third-order optical nonlinearity and optical limiting (OL) characteristics of an organic dye acid green 3 (AG 3) dye in water has been studied using a 635 nm diode laser of 5 mW power. The UV‒visible absorption studies were carried out to understand the linear optical properties of acid green 3 dye. The recorded Fourier transform infrared spectra of acid green 3 dye reveals that the π-electrons are delocalized through intermolecular charge transfer (ICT) within the N-ethyl–sodium sulphite bonds, which lead to measurable polarization across the push–pull molecules. The structural properties and crystalline size of the acid green 3 dye were examined by X-ray diffraction spectra. The third-order nonlinear optical (NLO) parameters such as nonlinear absorption coefficient (β) and nonlinear refractive index (n2) were determined by performing the open aperture Z-scan and closed aperture Z-scan experiments, respectively. The reverse saturable absorption and self-defocusing type optical nonlinearity were observed for acid green 3 dye. The experiments were also performed to understand the OL characteristics of acid green 3 dye and obtained a low limiting threshold of 1.23×102 W cm–2. The results of present experimental study reveal that acid green 3 dye possess good NLO properties and this dye system may be suitable for applications in low power NLO and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Agarwal G P and Boyd R W 1992 Contemporary nonlinear optics quantum electronics-principles and application series (New York)

  2. Manikandan M, Rajesh P, Ramasamy P and Kamlesh Kumar M 2020 Appl. Phys. A 126 1

    Article  Google Scholar 

  3. Gomez S L, Cuppo F L S and Figueiredo Neto A M 2003 Braz. J. Phys. 33 813

    Article  CAS  Google Scholar 

  4. Castro H P S, Wender H and Alencar M A R C 2013 J. Appl. Phys. 114 1

    Article  Google Scholar 

  5. He G S, Xu G S, Prasad P N, Reinhardt B A, Bhatt J C and Dillard A G 1995 Opt. Lett. 20 435

    Article  CAS  Google Scholar 

  6. Geethakrishnan T and Palanisamy P K 2007 Opt. Commun. 270 424

    Article  CAS  Google Scholar 

  7. Jamshidi Ghaleha K, Salmania S and Ara M H M 2007 Opt. Commun. 271 551

    Article  Google Scholar 

  8. Kramer M A, Tompkin W R and Boyd R W 1986 Phys. Rev. A 34 2026

    Article  CAS  Google Scholar 

  9. Bredas J L, Adant C, Tackx P and Persoons A 1994 Chem. Rev. 94 243

    Article  CAS  Google Scholar 

  10. Nalwa H S 1993 Adv. Mater. 5 341

    Article  CAS  Google Scholar 

  11. Anandana S, Manoharana S, Siji Narendranb N K, Sabari Girisunb T C and Asiri A M 2018 Opt. Mater. 85 18

    Article  Google Scholar 

  12. Henari F Z 2001 J. Opt. A: Pure Appl. Opt. 3 188

    Article  CAS  Google Scholar 

  13. Geethakrishnan T and Palanisamy P K 2006 Pramana – J. Phys. 66 473

    Article  CAS  Google Scholar 

  14. Nasseri F, Rokhsat E and Dorranian D 2016 Optik (Stuttg) 127 6813

    Article  CAS  Google Scholar 

  15. Sreenath M C, Hubert Joe I and Rastogi V K 2018 Opt. Laser Technol. 108 218

    Article  CAS  Google Scholar 

  16. Choubey R K, Medhekar S, Kumar R, Mukherjee S and Sunil K 2014 J. Mater. Sci. Mater. Electron. 25 1410

    Article  CAS  Google Scholar 

  17. Ali Q M and Palanisamy P K 2005 Optik 116 515

    Article  CAS  Google Scholar 

  18. Zongo S, Sanusi K, Britton J, Mthunzi P, Nyokong T, Maaza M et al 2015 Opt. Mater. 46 270

    Article  CAS  Google Scholar 

  19. Thankappan A, Thomas S and Nampoori V P N 2012 J. Appl. Phys. 112 1

    Article  Google Scholar 

  20. Ley C, Brendle J, Walter A, Jacques P, Ibrahima A and Allonasa X 2015 Phys. Chem. Chem. Phys. 17 16677

    Article  CAS  Google Scholar 

  21. Rekha R K and Ramalingam A 2009 Am. J. Appl. Sci. 2 285

    Article  Google Scholar 

  22. Harilal S, Bindhu C V, Nampoori V P N and Vallabhan C P G 1999 J. Appl. Phys. 86 1388

    Article  CAS  Google Scholar 

  23. Sheik-Bahae M, Said A A, Wei T, Hagan D J and Van Stryland E W 1990 IEEE J. Quant. Elect. 26 760

    Article  CAS  Google Scholar 

  24. MigalskaZalas A, Korchi K E L and Chtouki 2018 Opt. Quantum Electron. 50 1

  25. Sajana D, Ravindra H J, Misrac N and Hubert Joe I 2010 Vib. Spectrosc. 54 72

    Article  Google Scholar 

  26. Goel N, Sinha N and Kumar B 2013 Opt. Mater. 35 479

    Article  CAS  Google Scholar 

  27. Abdullaha M, Bakhtiarb H, Krishnan G, Aziz M S A, Daniald W H and Islamb S 2019 Opt. Laser Technol. 108 218

    Google Scholar 

  28. El Ouazzani H, Dabos-Seignon S, Gindre D, Iliopoulos K, Todorova M, Bakalska R et al 2012 J. Phys. Chem. C 116 7144

    Article  Google Scholar 

  29. Viswanath V, Subodh G and Muneera C I 2020 Opt. Laser Technol. 127 106168

    Article  CAS  Google Scholar 

  30. Islam S and Abdullah M 2020 Opt. Mater. 106 110034

    Article  CAS  Google Scholar 

  31. Saleem I Qashou, El-Zaidia E F M, Darwish A A A and Hanafy T A 2019 Phys. B: Condens. Matter. 571 93

  32. Sreeja S, Sreedhanya S, Smijesh N, Reji Philip and Muneera C I 2013 J. Mater. Chem. C 1

  33. Goel S, Sinha N, Yadav H, Abhilash Joseph J, Hussain A and Kumar B 2017 Arab. J. Chem. 3006 1

    Google Scholar 

  34. Das R and Kumar R 2012 Mater. Res. Bull. 47 239

    Article  CAS  Google Scholar 

  35. Durgababu G, Nagaraju G J and Bhagavannarayana G 2021 J. Mater. Sci. Mater. Electron. 32 2564

    Article  CAS  Google Scholar 

  36. Geethakrishnan T, Sakthivel P and Palanisamy P K P 2015 Opt. Commun. 375 218

    Article  Google Scholar 

  37. Madhana Sundari R and Palanisamy P K 2006 Appl. Surf. Sci. 252 2281

    Article  Google Scholar 

  38. Santhi A, Vinu Namboodiri V, Radhakrishnan P and Nampoori V P N 2006 J. Appl. Phys. 100 053104

    Article  Google Scholar 

  39. Geethakrishnan T and Palanisamy P K 2005 Curr. Sci. 89 1894

    CAS  Google Scholar 

  40. Zidan M D, Ajji Z, Allaf A W and Allahham A 2011 Opt. Laser. Technol. 43 1347

    Article  CAS  Google Scholar 

  41. Geethakrishnan T and Palanisamy P K 2006 Optik 117 282

    Article  CAS  Google Scholar 

  42. Pramodini S, Poornesh P and Nagaraja K K 2013 Curr. Appl. Phys. 13 1175

    Article  Google Scholar 

  43. Sreekumar G, Louie Frobel P G, Muneera C I, Sathiyamoorthy K, Vijayan C and Mukherjee C 2009 J. Opt. A: Pure Appl. Opt. 11 125204

    Article  Google Scholar 

  44. Zafar S, Khan Z H and Khan M 2013 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114 164

    Article  CAS  Google Scholar 

  45. Viswanath V, Nair S S, Subodh G and Muneera C I 2019 SN Appl. Sci. 1 43

    Article  Google Scholar 

  46. Pramodini S and Poornesh P 2014 Opt. Laser Technol. 62 12

    Article  CAS  Google Scholar 

  47. Singh V and Aghamkar P 2012 Appl. Opt. 51 2288

    Article  CAS  Google Scholar 

  48. Pramodini S, Deepika S, Rao A and Poornesh P 2014 Opt. Laser Technol. 62 58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Geethakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, S., Geethakrishnan, T. Third-order optical nonlinearity and power limiting characteristics of acid green 3 dye. Bull Mater Sci 45, 218 (2022). https://doi.org/10.1007/s12034-022-02800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02800-7

Keywords

Navigation